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INVERTING RANDOM FUNCTIONS II: EXPLICIT BOUNDS FOR
DISCRETE MAXIMUM LIKELIHOOD ESTIMATION, WITH
APPLICATIONS*
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Abstract. In this paper we study inverting random functions under the maximum likelihood
estimation (MLE) criterion in the discrete setting. In particular, we consider how many independent
evaluations of the random function at a particular element of the domain are needed for reliable
reconstruction of that element. We provide explicit upper and lower bounds for MLE, both in the
nonparametric and parametric setting, and give applications to coin-tossing and phylogenetic tree
reconstruction.
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1. Review of random functions. This paper is a sequel of our earlier paper
[12]. We assume that the reader is familiar with that paper; however, we repeat the
most important definitions.

For two finite sets, A and U, let us be given a U-valued random variable &, for
every a € A. We call the vector of random variables (¢, : a € A) a random function
Z: A — U. Ordinary functions are specific instances of random functions. It is easy
to see [12] that an equivalent definition of random functions is obtained by picking
one of the |U|l4! ordinary functions from A to U according to some distribution.

Given another random function, I', from U to V, we can speak about the compo-
sition of I' and Z, "o Z: A — V, which is the vector variable (v, : a € A). In this
paper we are concerned with inverting random functions. In other words, we look for
random functions I': U — A in order to obtain the best approximations of the iden-
tity function t: A — A by I'o E. We always assume that = and I' are independent.
This assumption holds for free if either = or I is a deterministic function.

Our motivation for the study of random functions came from phylogeny recon-
struction. Stochastic models define how biomolecular sequences are generated at the
leaves of a binary tree. If all possible binary trees on n leaves come equipped with a
model for generating biomolecular sequences of length &, then we have a random func-
tion from the set of binary trees with n leaves to the ordered n-tuples of biomolecular
sequences of length k. Phylogeny reconstruction is a random function from the set of
ordered n-tuples of biomolecular sequences of length & to the set of binary trees with
n leaves. It is a natural assumption that random mutations in the past are indepen-
dent from any random choices in the phylogeny reconstruction algorithm. Criteria for
phylogeny reconstruction may differ according to what one wishes to optimize.
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Consider the probability of returning a from a by the composition of two random
functions; that is, r, = P[ve, = a]. The assumption on the independence of Z and I'
immediately implies

(1.1) ra =Y Plta =u]-Ply, = d.

uelU

A natural criterion is to find I' for a given Z in order to maximize ) 7,. More
generally, we may have a weight function w : A — RT, and we may wish to maximize
> Tew(a). This can happen if we give preference to returning certain a’s, or if we have
a prior probability distribution on A and we want to maximize the expected return
probability for a random element of A selected according to the prior distribution.
A random function T : U — A can be defined in the following way: for any fixed
u e U,

(1.2) i =a" for sure if Va € A, P[,- = ulw(a®) > P[§, = u]w(a).

In case there is more than one element a* that satisfies (1.2), we may select uniformly
at random from the set of such elements. This function I'* is called the mazimum a
posteriori estimator (MAP) in the literature [7]. The special case when the weight
function w is constant is known as the mazimum likelihood estimation (MLE) [2, 7].
The MAP estimator I'* maximizes ), r,w(a) for any given Z; i.e., MAP is best on
average. This result appears as Theorem 17.2 of [8], but an equivalent formulation, in
the context of decision theory, is given by Theorem 10.3.1 of [2]; a further formulation,
using a different proof, appears as Theorem 3.1 of [12]. However, it is at least as
natural to look at a more conservative criterion: maximize the smallest value of r,
for a € A; i.e., do the worst case the best. For this criterion MAP or MLE is, in
general, not optimal. It is surprising, but little is known about the performance of
MAP or MLE under this more conservative criterion.

Our paper [12] introduced a new abstract model for phylogeny reconstruction:
inverting parametric random functions. Most of the work done on the mathematics
of phylogeny reconstruction can be discussed in this context. This model is more
structured than random functions, and hence is better suited to describe details of
models of phylogeny and the evolution of biomolecular sequences. The approach is
likely to be applicable in other areas where “nuisance” parameters are involved.

Assume that for a finite set A, for every a € A, an (arbitrary, finite, or infinite)
set O(a) # () is assigned, and, moreover, O(a) N O(b) = ) for a # b. Set B = {(a,0) :
a € A,0 € O(a)} and let m; denote the natural projection from B to A. A parametric
random function is the collection = of random variables such that

(i) for a € A and 6 € O(a) there is a (unique) U-valued random variable £, g)
in E.

We are interested in random functions I' : U — A independent from = so
that ~e,,, best approximates 7 under certain criteria. Call R(,g) the probabil-
ity Plye, , = al. MLE, as it is used in the practice of phylogeny reconstruction,
would take the I, for which, for every fixed u, ~/, = o’ for sure, if

(13) V<CL,9) €eB 39/ < @(G//) P[f(a/ﬁ/) = u] Z P[g(aﬁ) = ’U/}

In case there is more than one element a’ that satisfies (1.3), we may select uniformly
at random from the set of such elements. (We avoided using the more natural looking
quantification 3¢ € ©(a’) for all (a,0) € B, since P[{4 9) = u] may not take a
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maximum value!) We denote by R, , the probability that from the pair (a,) the
MLE I" returns a, i.e.,

(1.4) (@) = Pl = al-

In [12] we made further assumptions on parametric random functions that we do
not make in this paper:

(ii) There is a measure space (O(a),uq(.)) defined on every ©(a) such that
1a(6(a) < oo.

(iii) For all w € U, and for all a € A, P[{(4,0) = u] € L' (O(a), fta(.)).

Under these additional conditions we showed in [12] that in the model of para-
metric random functions the MLE criterion has to be modified to ensure the property
that I maximizes:

(1'5> Z /R(aﬁ)dﬂa(e)'

acA

This criterion is natural, since if 3, , [ duq(0) = 1, the formula (1.5) can be inter-
preted as the expected probability of return of elements of A, given a prior distribution
on A.

The purpose of this paper is to place explicit upper and lower bounds on the
probability that MLE correctly reconstructs elements of A, in both the parametric and
nonparametric settings. Our primary interest is in the situation where k independent
experiments are carried out, and we wish to determine how large k needs to be in
order to correctly recover the underlying element of A with high probability. To
emphasize the role of k we will let [r(®)])* (resp., [R(k)]zaﬂ)) denote the probability
that MLE correctly reconstructs a in the nonparametric (resp., parametric) setting.
We illustrate our bounds in the nonparametric setting by applications to coin-tossing
and phylogeny reconstruction.

For the parametric setting, we first show, by way of an example, that the non-
parametric upper bound on k does not extend in the way one might hope or expect.
Nevertheless, we provide (in Theorem 5.1) an explicit upper bound on the number &
of experiments required for MLE to reconstruct elements of A accurately. This result
can be regarded as an extension of a discrete version of Wald’s theorem [15]. We
describe some implications of this result for phylogeny reconstruction in the remarks
following Theorem 5.1.

Most of present paper can be considered as an attempt to analyze the worst
case behavior of MLE. This is a very natural question in situations where a prior
distribution is not given on A, or the inverting of the random function is to be carried
out only once. Such a situation arises in phylogeny reconstruction, where we do not
have a prior distribution on alternative evolutionary scenarios, and the reconstruction
is not going to be repeated—there is only one “tree of life” that we want to know.
However, the results in this paper are not restricted to the phylogeny setting and may
be relevant to several other areas where MLE estimation is employed.

Our approach is information-theoretic; we focus on the possibility or impossibility
of inverting random functions, and not on the computational complexity issues. Our
results can also be restated in the language of decision theory, by talking about “loss
functions” and “risk function” associated with the ML decision rule. Although some
of our consequences or applications (described in section 4) may be derivable from
existing theory, as far as we are aware the main results in this paper are not special
cases of published results in either information theory or statistical decision theory.
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2. Distances between distributions. For a,b€ A, Z: A — U, let
(2.1) d(a,b) = Y |Pléa = u] = Pl& = u]].
uclU

We will refer to d(a,b) as the variational distance of the random variables &, and &p.
We also use the Hellinger distance of the random variables £, and &, defined by

(2.2) drr(a,h) = Z(\/mzu}—\/msbzul) |

uelU

These measures sometimes appear with slightly different definitions, terminology,
and normalization constants. (For example, %d(a, b) is sometimes referred to as the
“variation distance.”) It is well known (see p. 25 in [9]) that 0 < d(a,b) < 2 and

(2.3) d%(a,b) < d(a,b) < 2dy(a,b).

We are going to use a well known and elegant multiplicative property of the Hellinger
distance. For any Z : A — U random function define the Z*) : A — U* random
function as a sequence of k independent trials of =. Let dgf) (a,b) denote the Hellinger

2

distance of the random variables &; ' and §l§k). Then independence immediately im-

plies the identity

k

(2.4) 1— ;<d;’;>(a, b))2 - <1 - %d%(a, b)) ,

by virtue of the formula

25 (VG = - Ve =) —2-2 % VFE = avFE =

uelU uelU

Combining the inequality 1—(1—2)* < kz which holds for all 0 < 2 < 1 and k positive
integers, and (2.4), we obtain

(2.6) (d;’?(a, b))2 =2 [1 - <1 - %di,(a, b))k} < kd2 (a, b).

Using the notation d*)(a,b) for the variational distance of the k independent trials,
i.e., of the random variables ft(lk) and fék), inequalities (2.3) and (2.6) imply
(2.7) d® (a,b) < 2Vkdy(a,b).

The nonsymmetric Kullback—Leibler distance (or relative entropy) of the random
variables &, and &, is defined as

_ = ullo P[ga :u]
s o) = 3 Fle, = ullog gt =

We will use the inequality [4]

(2.8) dicr(a,b) > %dQ(a,b).
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3. MLE for inverting random functions. In this section we describe some
lower and upper bounds on the probability that MLE correctly reconstructs elements
of the set A. A classical upper bound on the average value of r, over A—or more
generally the value of ) _ , 7qw(a) for some probability distribution w on A—is given
by “Fano’s inequality” (see, for example, [4]). Here we recall from [12] a different type
of upper bound that applies also to r, for any particular value of a and which is closely
related to the variational distance.

THEOREM 3.1. Assume that we have finite sets A and U and random functions
Z:A—>Uand I' : U — A. Suppose that there is an element b € A and a subset N,
be N C A such that for alla € N

d(a,b) < 6.

Then we have

e, <~ 4 6(1— —
minr, < — - — .
aeN @ = |N| IV

Now we can state the following lower bound for r, in the setting of Theorem 3.1.

THEOREM 3.2. Assume that we have finite sets A and U and a random function
2:A—U. Assume that I : U — A is the MLE, and r} is the return probability of
a € A using I'*. Then we have

(3.1) ri>1— §<1 - ;d(a,b)>.

If the MLE T* : U* — A is applied to invert the random function Z%) : A — U*,
which is a sequence of k independent trials of =, then

k
(3.2) ) > 1 - Z<1 - %di,(a, b)) .

b#a
Proof. For y € A let

U,={ueU|VzeAuzx#yP¢ =u] >P¢ =u]}

and similarly for V, with “>” instead of “>” in the definition. It is clear from
independence (1.1) and the definition (1.2) that

(3.3) > S B, = ul.

ueU,

For z,y € A set pj =) P&, = u]. Now we claim

ueVy
(3.4) re>1-) pl.

y#a
Note that

Sopr =" Pl =ul > Plé, ¢ U,

y#a yF#aueVy
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since the complement of U, is a subset of Uy,-,V,, and
P& ¢U)=1-Plg €U, >1 -1
by (3.3). This establishes (3.4). Finally, we have

= [Pla = u] = P[¢, = u]|

uelU

= Z(P[gy:u] P&, = u)) Z IP[€a = u] = P[&, = u]]|

ueVy ugVy

— P+ S (Plea = u] + PlE, = u]) = p— pl + (1 —p%) + (1— p¥) = 2 — 290
ugVy,

Hence, pj; <1 — %d(a,y), and plugging this into (3.4) yields (3.1). To prove (3.2),
apply (3.1) to Z*) and invoke (2.4). d

Remarks. First, note that (3.2) immediately implies that if d, = miny., du(a,b),
then [r®)]* > 1 — \A| exp(—kd? /2). Consequently, if

A
(3.5) k> = log 2,
€

then [r®)]* > 1—¢. Second, note that an analogue of (3.2) also holds if, instead of k in-
dependent trials of =, we take independent A — U random functions =1,=,,...,Z.
Now the lower bound on [r(®)]* is

k
=TI (1- ye((@n ) ).

b#a i=1
4. Applications.

4.1. Solving biased coin-tossing with MLE. We want to show an example
where our upper and lower bounds for reconstructing random functions are nearly
tight. Assume that U = {T, H}; i.e., we are tossing coins. Let a set A consist of
n—+ 1 biased coins, denoted by 0, 1,2, ..., n. Define the random function = as follows:
coin ¢ shows H with probability i/n and shows T with probability 1 —i/n. We show
the following: there is a constant c; such that for £ = ¢;n?, for k independent trials
of 2, 2k, [r(k)]i cannot be uniformly close to 1, no matter which method is used for
inverting Z(*). However, there is a constant ¢y such that for k = con?, using MLE,
we find [r(®)]* uniformly close to 1.

3
For simplicity we assume that n is odd We are going to use Theorem 3.1 in the

following setting: b= 251, N = {253 n=1 ntl} Then,
1 2
in[r), < =4+ 26
miglr e < 5+ 38

where § is the largest variational distance for Z*) among b and the elements of N.
Observe that for Z, by formula (2.5), we have

(4.1) d%(z',j)2<1“§<”2<"ﬂ'>).
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It is easy to see that, for i = b, j € N, (4.1) is maximized by jo = 241 at the value

2(1—v1— %) <2/n% By (2.7), d® (b, z) < 2Vkdy (b, z), for every z, and therefore
6 < 2VEkdg (b, j0) < 4Vk/n. Any choice of ¢; < 1/4 suffices to keep either Tn_s or
rn+1 separated from 1.

* In the other direction we use Theorem 3.2. By (3.2) and (4.1) we have

(42) PO 2 1 i(l - id?f“*j))k =1- Z(ﬁ ¥ m)

j=0 j=0
e J#i

By the classical inequality

Varaz + /biby < \ay + by - ag + by,

the generic subtracted term in the summation (4.2) is estimated from above by

(1 . o—z')?)’“/?
n2
Hence,

(4.3) B >1-2 Zn: (1 — "f)k/g.

Now observe that

n m2 k/2 1 k/2 1 2vk/2
(4.4) > 1-— <(1-— +n | (1-22)"%dx
1

and

1 1 vE
n/ (1- xz)k/ZdI < n/ e k2?2 0y < n et 2at < o ;271'.

Therefore, for a sufficiently large cs, selecting k = con?, both terms in the right-hand
side of (4.4) will be as small as wanted, and hence in (4.3) [r*)]* will be as close to 1
as wanted.

4.2. Phylogeny reconstruction. As a second application, we consider a prob-
lem arising in phylogenetic analysis. In this setting we have a model for generating
sequences at the leaves of a tree, and the question is how long such sequences need
to be in order to correctly reconstruct the tree—with high probability—from just the
generated sequences.

The simplest stochastic model, for two-state sequences, is the symmetric model,
due to Neyman [10], which we call the Neyman-2 model. (Related models also arise in
statistical physics and in the theory of noisy communication—see, for example, [6].)
Let {0,1} denote the two states. Let us be given a binary tree T (a tree in which
each vertex has degree 1 or 3) with n labeled leaves. We describe how a single site
in the sequence develops on 7', and then we assume that the sites are independently
and identically distributed (i.i.d.).

For each edge e of T' we have an associated transition probability, which lies strictly
between 0 and 0.5. Let p : E(T) — (0,0.5) denote the associated map. Select one of
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the leaves! and assign it state 0 or state 1 with probability 0.5. Direct all edges away
from this leaf and recursively assign random states to the vertices of T as follows:
if e = {u,v} is directed from u to v, and u (but not v) has a state assignment,
then v is assigned the same state as u with probability 1 — p. or the other state with
probability p.. (In this latter case, we say there is a transition on e.) It is assumed that
all assignments are made independently, and so the pair (T, p) determines the joint
probability of any assignment of states to the vertices of T' and thereby the marginal
probability of any assignment of states to the leaves of T'. If we independently generate
k such assignments of states to the leaves of T', we obtain n sequences of length k.
For this model, upper bounds on the sequence length k required to reconstruct the
underlying tree were given in [5, 12]. These papers showed that, for accurate tree
reconstruction, k needs to grow only quadratically in 1/f, where f is the smallest
transition probability in the tree, when other parameters are fixed. We now show
that this rate of growth is not only sufficient but is also necessary.

Consider binary trees having four labeled leaves and two unlabeled interior ver-
tices. There are three such trees (up to equivalence), and we will denote them as
a, b, c. Each tree has four leaf edges (an edge incident to a leaf) and one interior edge.
Take A = {a, b, c}, and let U be the set of binary functions defined on the four leaves.
Assume that a, b, c are Neyman-2 trees with transition probability f on the interior
edge. (We do not care what the other transition probabilities are.) Let = denote the
state assignment of the leaves of a, b, c under the Neyman-2 model.

THEOREM 4.1. For the three Neyman-2 binary trees a,b,c on four leaves (as
described above), and state assignment Z, under any method for inverting random
function Z from k independent trials (i.e., from binary sequences of length k associated
with the leaves) with success probability near 1 for all three trees, k = Q(#)

Proof. We are going to prove that for f sufficiently close to 0, for some constant
C >0,

(4.5) di(a,b) < CF.

Now (2.7) and (4.5) imply d*)(a,b) < 2C vk, and one similarly obtains d*) (¢, b) <
2C fvk. So if we apply Theorem 3.1 with N = {a,b, ¢},

1 4
(4-6) min{ra,rc} < 3 + ng\/E,

and the right-hand side of (4.6) is well separated from 1 as k is a small constant
over f2.

To complete the proof, we have to verify (4.5). Assume that a is the tree in which
the interior edge separates leaves 1,2 from leaves 3,4; and b is the tree in which the
interior edge separates leaves 1,3 from leaves 2,4. By (2.2)

(4.7) A0’ =3 (\/]P’[fa = - VPG = u}> ,

uelU

where the summation goes for 16 terms which correspond to the 16 elements of U:
functions with domain {1,2,3,4} and range {0,1}. We are going to condition on the

LOne assumes that mutations of an ancestral sequence happen in this way. However, it can be
shown that the selection of the special leaf has no effect on the reconstruction in the model considered
here.
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event ¢, denoting that there is transition on the interior edge of the tree and also for
the complement of this event. For x = a, b define

A(z,u) = Plée = u | ~®],
B(z,u) =Pl¢, =u | ] —P[§, = u | ~D].

Notice that A(z,u) and B(z,u) are constants that do not depend on f. Also, observe
that

P[fa::u] ZP[&;:M ﬁ(I)]'(l_f>+]P)[£m:ul (I)]f
=Pl¢ = u[ =]+ f - (P[gz =u|®]-Pl =u ﬁ(I>D
— Afw,u) + [ Blau).
It easily follows from the geometry of the trees a and b that A(a,u) = A(b,u). Fur-
thermore, it is easily seen that A(a,u) # 0 for all values of u, which ensures (below)

that we may divide expressions by A(a,u). Hence, by the Taylor expansion of the
square root function, we have

- — _ fB(a,u) fB(b,v)
\/P[fa —u] - \/P[fb —u] = \/A((l,u) (\/1+1w — \/1+A(a,u)>

B(a,u) — B(b,u)
2/ A(a,u)

(4.8) =7 +0(f%),

and summing up 16 terms like (4.8) we obtain

d%[(a,b) = f2 Z

uelU

(B(a,u) — B(b,u))?

4A(a,u) +O(f%),

and this proves (4.5) for all

(B(a,u) — B(b,u))?
C . O
~ Z 4A(a,u)
uclU
5. MLE for inverting parametric random functions. We start with an
example showing that for parametric MLE there is no counterpart of (3.2); that is,
there is no function f = f(6, k) such that, for all § > 0, limg_ f(6,k) = 0 and

(5.1) [R¥)(gy = 1= f(6((a,0),b),k),
b#a

where

6((a,0),b) = e/é%f(b) dH((a’7 0), (b, 0/))

Take A = {ay, a2}, U = {u1,us, ..., us2}, O(a1) = O(az) = U*. We denote a generic
element of U”* by u, and supp(u) denotes the set of elements of U which occur as

coordinates in u. Let B = ({a1} x O(a1)) U ({az} x ©(az)). Define the parametric
random function = : B — U as follows. Set P[{(4, w) = v] = 1/|U| for each v € U. For
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u € U" and v € U, set P[{(q,,u) = v] = i/k if v occurs at i = i(v) coordinates in u.
Now for any w,u € U* we have

(5.2) d((al,w), (ag,u)) >2— %

by the calculation

i) 1 1 1 2% . 1
> (Fm) E o m E m

vesupp(u) vésupp(u) vesupp(u)

Now consider k independent trials of Z, Z(%). We study inverting Z(*) with parametric
MLE. Note that, for any u € U*,

k k 1 k
P[g((“;“) =] = [ [ PEa,u) = ui] > (k> ;

i=1

and for any w € U*,

w k 1\* 1\

IEDE(al,w) =u] = Hp[g(alvw) =ui] = (2]{:2) < (k‘) :
i=1

Therefore, one always has [R(k)}’(al’w) = 0 (see (1.4)), while by (5.2) and (2.3) the

dy distances between the random variables corresponding to a; and as are well sep-

arated from zero. This establishes our claim at the start of this section regarding the

nonexistence of an analogue of (3.2) from Theorem 3.2.

Intuitively, the reason this construction works is that we have selected range and
parameter spaces whose size depends on the sequence length k. Note that we could
have allowed |U| to grow just linearly with & and still obtained the same conclusion.
However, by allowing |U| to grow more quickly with k our construction has a further
notable property. Namely, the random variables corresponding to a; and as become
maximally distant under variation distance as k — oo, as inequality (5.2) reveals.

However, with mild extra conditions we can state a positive result. This positive
result provides explicit bounds on the convergence of the MLE in the parametric
setting.

THEOREM 5.1. Assume B = {(a,0) : a € A,0 € O(a)}, and E : B — U is
a parametric random function, where A and U are finite sets. Assume that for a
particular (a,0) € B there exists a dy > 0 such that for all b € A, b # a, and
0’ € ©(b)

(53) d((aa 0)) (ba 0/)) Z dOa
where d, as usual, denotes the variational distance. If the MLE is applied to invert

the parametric random function 2% : A — U*, which is a sequence of k independent
trials of Z, then

(5.4) lim [RW], 5 = 1.

k—oo

For a more precise result, set UT = {u € U : P49 = u] > 0}, and
a = min,ey+ P, = ul. If

(5.5) k> flondo) log (Q'Z”) ,
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then MLFE estimation returns a with probability at least 1 — €, where

17log? a1 + 2)2
f(a,do)max{w, og ol t) }

1
o ady

Proof. For u € U, define p(u) = P[{(4,9) = u], and then a = min,cy+{p(u)} > 0.
Define p(u) as the corresponding relative frequency, i.e.,

(56) P = 14U (€)wo) = ub

where §; is the jth trial of the random function. Let 6 = \/%, and let

= min E —&%
= 272llogal(1+ 2) f°
Then,

n|log af

§
< —d2.
a(l —n) 0

(5.7) n|log | +

By the large deviation inequality given in formula (14) of Appendix A in [1], we have
(5.8) P[|p(u) —p(u)| > np(u)] < Ze_cnkp(“),

where ¢, = min{—log [e"(1 + 77)—(1+77)]7’72—2}. Note that for 0 < n < 1/2 we have

—log[e"(1+n)~(+m] > @ by Taylor expansion, and hence ¢,, > 7? /4. Therefore,

formula (5.8) holds if we change ¢, to ?/4 in the exponent. Now suppose k satisfies

inequality (5.5). Then,
4 21U+
k> —5log (|U|>
an €

by the definition of f and 1. Consequently, 2|U+|e_’72’w‘/4 < €, and so, with proba-
bility at least 1 — €, we have

5.9) VueU |p(u) = p(u)| < np(u).

We also used the Bonferroni inequality, and the fact that, with probability 1, p(u) =
(u)=0forallu e U\U".) For z € A,w € O(z), consider

(5.10) L(z,w) =Y p(u)log P&y . = u].
uelU

—_~ o~

=3

(Here, as always in this kind of calculation, we use the convention 0x (—oc0) = 0, which
is supported by lim,_,q+ xlogz =0.) L(z,w) is % times the natural logarithm of the
probability that the observed sequence of U-elements came from (z,w). Therefore
L(z,w) <0 is proportional to the log-likelihood of (x,w).

Now consider a fixed b € A, b # a and a fixed 8’ € ©(b). For u € U, we use the
notation q(u) = P[{ 6y = ul.

We finish the proof conditional on the following event:

(5.11) [(5.9) holds] and [u ¢ U™ implies p(u) = 0].
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Note that the second part of the condition holds with probability 1, and so event (5.11)
occurs with probability at least 1 — e.
We distinguish two cases. In both cases we show

(5.12) L(a,0) — L(b,0") >0

Since L(a,0) (resp., L(b,0")) is the log-likelihood of getting the observed sequence
from (a,6) (resp., (b,6')), (5.12) implies the correct reconstruction of a from the
observed data by MLE by (1.4). Since this holds (with probability 1) for all &',
conditional on event (5.11), and event (5.11) occurs with probability at least 1 — e,
the probability that MLE correctly reconstructs a will be at least 1 — €, as required.

Case 1. There exists a v € UT with ¢(v) < exp(al(olg_%). In this case
L(b,0") < p(v)logq(v) < loga, so L(b,0") < loga. On the other hand,

9):21[)( log p(u Zp )log o = log av.
uelU ueU

Therefore, L(a,8) > L(b,0").
Case 2. For all u € Ut, q(u) > exp(—28%-). We have, for all u € U,

|log q(u)| < “gga‘ Consider

L(a,0) — L(b,6') = Y p(u) log Z(Z) = > pu)log p(w)

uelU

(5.13) Z p(u 1og—Z+ 3 (bu 1g§EZ;.

ue ueU~t

Notice that the first sum in (5.13) is exactly the Kullback-Leibler distance
dir((a,0),(b,0"). By formulae (2.8, 5.3) this first sum is at least 2d3. Since we
condition on (5.9), |p(u) — p(u)] < np(u). Hence, we can estimate the absolute value
of the second sum in (5.13) by

log o
> ap(u)(|log p(u)| + [log g(u)]) < > np(u <logal+||>

uelU uelU (1 - 77)
n|10ga\ 1)
5.14 =nplloga| + ——— < =
(514) = nllogal + 8% < 23
by (5.7), and so L(a,0) — L(b,0") > 0. 0
Remarks.

1. Notice that, because |[UT|a < 1, inequality (5.5) will hold whenever k >
f(a,do)|log(£)|. Notice that this bound on k (that suffices for parametric
MLE to reconstruct a with probability at least 1 — €) depends only on €, do,
and «, and it is independent of the cardinality of A and U (cf. the bound we
described for nonparametric MLE in the remark following Theorem 3.2).

2. Note also that the example described at the beginning of section 5 shows that
one cannot strengthen Theorem 5.1 by simply dropping the role of a. That
is, Theorem 5.1 fails if we replace (5.5) with the weaker condition that

+
kal(do)log(2|Z| )
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for some suitable function f; (that does not depend on «), since in the ex-
ample described any such inequality will be satisfied for sufficiently large k
(|U| grows only quadratically with k), yet MLE fails to recover a;. A closer
examination of this example shows that o converges to zero sufficiently fast
with & for the bound in (5.5) to be violated.

3. Suppose that for each b € A we have (i) the set O(b) is a compact topological
space, and (ii) the mapping from ©(b) to the interval [0, 1] defined by (b, 0) —
P({(s,9) = u) is continuous for each element v € U. Then the separation
property (5.3) required in Theorem 5.1 becomes equivalent to the (in general
weaker) condition that for all b € A, b # a, and 6’ € ©(b)

(5.15) d((a,0), (b,0')) > 0.

For example, for most models in the phylogenetic setting, assumptions (i)
and (ii) will apply, and so MLE will be statistically consistent (that is, satisfy
(5.4)), provided the model satisfies (5.15). In particular, the detailed anal-
ysis and additional assumption required by Chang [3] in order to establish
(for a general Markov model on trees) a strengthening of (5.15) to the case
b=a, 6 # 0 is unnecessary if one wishes simply to establish the statistical
consistency of MLE in the estimation of a binary tree (and not the associ-
ated transition matrices of the model). There are also other models in use
that satisfy (5.15) and thereby justify the statistical consistency of MLE. For
example, consider a model in which sites evolve i.i.d. on a binary tree accord-
ing to a stationary, reversible Markov process (with an unknown rate matrix)
and with a rate factor (constant across the tree) drawn from a distribution D.
Such models satisfy (5.15) if D is known and therefore the same for each pos-
sible tree [14, section 3.3]; however, (5.15) may fail if D is unknown [13]. We
note that Theorem 5.1 also provides the first explicit upper bounds on the
sequence length required for MLE to accurately reconstruct a binary tree in
the phylogenetic setting.

6. Conclusion and open problems. It would be interesting to see how much
the bound on k given by Theorem 5.1 might be improved. This question applies both
for the general setting in which Theorem 5.1 is stated, and also for more particular
settings, such as arises in phylogeny.

In the general setting, observe that our upper bound on k given by Theorem 5.1
grows at the rate d; . Yet, in the nonparametric setting, if we let dy = min{d(a,b) :
a,b € A a # b}, then the analogous upper bound on k grows at the rate daz (by
inequalities (3.5) and (2.3)). An interesting question is whether this discrepancy is
essential in moving from the nonparametric to the parametric setting, or whether
it can be avoided by a different argument. There are other significant differences
between our results for the nonparametric and parametric setting—for example, al-
though |A| (but not |U]|) enters directly into our bound on %k in the nonparametric
setting (inequality (3.5)), in the parametric setting |A| is not directly mentioned but
|UT| is.

Regarding more particular parametric MLE settings (such as in phylogeny) it is
quite likely that the additional structure present in these instances may yield tighter
bounds than those given by Theorem 5.1. It would be particularly desirable to set
matching lower and upper bounds on the sequence length (the number of samples k)
required by MLE in phylogeny reconstruction. It is clear that, for certain choices of
the parameter §, MLE may require longer sequences than other methods to correctly
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reconstruct a phylogenetic tree (as discussed in [11] and [12]). Indeed, the statistical
consistency of MLE in phylogeny was established only in 1996 by [3] in a result that,
like Wald’s earlier result [15], is based on a compactness argument that does not give
an explicit bound on k. The significance of Theorem 5.1 is that it gives the first such
explicit bounds for MLE, both in the phylogenetic setting and beyond.

6.1. Correction. Theorem 2.3 in [12], cited as Theorem 3.1 in our current paper,
tacitly assumed b € N. This assumption has to be made explicit.
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