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A fundamental problem in biological
classification is the question of how best to
combine into one phylogenetic tree a collec-
tion of phylogenetic trees that classify the
same or overlapping sets of taxa. When the
sets of taxa are the same, this problem is
known as the consensus tree problem; the
more general situation, where the trees clas-
sify possibly different, though overlapping
sets of taxa, has become known as the su-
pertree problem (Sanderson et al., 1998). For
the supertree problem, even if the input
trees are compatible (defined below), there
may be many, essentially different ways to
amalgamate them. A further complication
is that, for either problem, the given trees
may not be compatible. Furthermore, even
the task of merely determining compatibil-
ity is difficult for the supertree problem on
unrooted trees (Steel, 1992).

The search for “good” new algorithms to
amalgamate trees is topical, particularly for
the supertree problem because existing
methods appear to have certain limitations
and seem somewhat ad hoc: A common su-
pertree method is to recode trees by charac-
ters and apply maximum parsimony recon-
struction; see for example, Baum (1992),
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Ragan (1992), Purvis (1995a), and Sander-
son et al. (1998).

The purpose of this note is to point out
that inherent limitations exist as to what
any supertree or consensus tree method can
possibly achieve. More precisely, we dem-

~ onstrate here by simple examples that, al-

though one can easily list various desirable
properties that one would like such a
method to possess, no method can possess
all of these simultaneously. Although this
may be viewed as a somewhat negative re-
sult, its positive spin-off is that it focuses at-
tention on those types of supertree con-
structions one should aim for and indicates
promising lines for future work. Although
we insist that any supertree method must
return a single tree, we will briefly discuss
extensions that allow several trees to be in
the output.

One inherent limitation on the solution to
the consensus tree problem for unrooted
trees has been described by McMorris
(1985), who discussed three conditions that
cannot simultaneously be satisfied by any
consensus method. The conditions we con-
sider here are quite different and somewhat
simpler. We will also see that there is a fun-
damental distinction between rooted and
unrooted trees.

LIMITATIONS ON SUPERTREE METHODS

We begin with some terminology. Unless
indicated otherwise, we will regard a phy-
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logenetic tree as unrooted because phy-
logeny reconstruction algorithms generally
do not locate the root of a tree (despite the
tendency of some programs to represent
trees as rooted). We say that a phylogenetic
tree T resolves a phylogenetic tree T’ if T’
can be obtained from T by collapsing edges.
A phylogenetic tree is fully resolved if it
cannot be resolved any further; this is the
same as requiring that the tree has no (non-
hard) polytomies (i.e., for an unrooted tree,
each interior vertex has degree 3; for a
rooted tree, each interior vertex has exactly
two descendant vertices). We say that a
phylogenetic tree T displays a phylogenetic
tree t if the phylogenetic tree that one ob-
tains from T by deleting all taxa (and con-
necting edges) that do not appear in ¢ is
equal to, or resolves t. (Allowing for resolu-
tion is in line with the “soft polytomy” in-
terpretation, whereby a multifurcation in
the tree is regarded as uncertainty as to the
exact order of speciation, rather than cer-
tainty as to a multiple and simultaneous
speciation event.)

A collection C of phylogenetic trees is
said to be compatible if there exists a phylo-
genetic tree T that displays each tree in C. In
this case, T is said to be a parent tree for the
collection C.

For the supertree (or the consensus tree)
problem, we will say that a supertree (or a
consensus tree) method A takes a collection
of input trees and returns exactly one out-
put tree.

Consensus methods are sometimes de-
scribed as applying to unordered inputs
(sets) of trees, or to ordered inputs of trees,
or (more generally), to a partial ordering of
input trees, where the partial order might
reflect one’s relative confidence in each
tree. Whatever viewpoint is adopted, any
consensus method should be able to deal
with the case in which the trees have equal
support. This motivates the first entry in
our list of three desirable properties:

P1. The method can be applied to any un-
ordered set of input trees.

P2. If we rename all the species, and then
apply the method to the new input
trees, the output tree is simply the old
output tree, but with the species re-
named accordingly.

P3. If there exists at least one parent tree for
the given collection of input trees, then
the output tree is one of those parent
trees (that is, the output tree displays
the input trees whenever the latter are
compatible).

Property P1 requires that in case we have
equal confidence in all the input trees, then
the arbitrary order in which we input these
trees does not matter (formally, method A is
symmetric for such inputs in this case).
Property P2 requires that the manner in
which we name or label our species does
not affect the outcome (formally, method A
operates equivariantly with respect to per-
mutations of the taxa set). Property P3 re-
quires that if the input trees do fit together,
then the method selects one of the trees that
displays all the input trees.

Properties P1 and P2 seem absolutely
compelling, whereas P3 also appears to be
desirable. However, our first result says
that all three properties cannot be simulta-
neously achieved for unrooted trees.

Proposition 1. There is no supertree method
that satisfies P1-P3 for unrooted phylogenetic
trees, even when the input trees are restricted to
being fully resolved.

We offer the following simple argument
to establish this claim. For taxa I, ], K, L, let
us write (IJ)(KL) to denote the fully resolved
unrooted phylogenetic tree that groups to-
gether taxa I and ] versus taxa K and L.
Consider six taxa, labeled 1, 2, ..., 6, and
the input trees (12)(45), (34)(16), (56)(23).
Note that these three input trees are com-
patible. Suppose a supertree method A sat-
isfies P1 and P2; we will show that P3 fails.
The key observation (from Bocker et al.,
1999) is that there are precisely two trees
that are parent trees for this collection of
trees. Therefore, precisely two potential
candidates exist for the output tree of any
supertree method that satisfies P3—the two
trees shown in Figure 1. Now, notice that if
we had interchanged the names of taxa 2
and 6, and also interchanged the names of
taxa 3 and 5, then our collection of input
trees would become (16)(43), (54)(12),
(32)(65) which are the same three input
trees, just listed in different order. Thus, by
P1 and P2, the output tree resulting from
the application of method A to the un-
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ordered set consisting of the three input
trees must remain unchanged under these
two simultaneous taxa interchanges. Yet,
neither of the two possible parent trees (in
Fig. 1) has this property (in fact, performing
simultaneously the taxa interchanges of 2
with 6, and 3 with 5 simply interchanges the
two parent trees). Consequently, regardless
of which of the two possible parent trees
method A chose as its single output tree, we
see that P3 cannot hold, as we have claimed.

This result suggests that the supertree
problem simply does not have a globally
satisfactory solution, at least if one allows
unrooted trees. The imperative nature of P1
and P2 suggests either (1) abandoning
property P3, or (2) dealing with more re-
strictive inputs such as rooted trees, or (3)

FIGURE 1. The two phylogenetic trees that display
the trees (12)(45), (34)(16), (56)(23).

outputting a collection of supertrees that
lists all of the competing phylogenetic in-
ferences that can be drawn from the collec-
tion of input trees.

With regard to option (1), it is easy to sat-
isfy P1 and P2 if we abandon P3—for exam-
ple, by always outputting the completely
uninformative star tree! An interesting
problem is how to devise a more sensitive
approach that retains some phylogenetic in-
formation, yet can be carried out when the
input trees are both large and numerous.
For example, a first simple approach might
be to take the strict or majority rule consen-
sus of the set S of all parent trees for the in-
put trees (outputting a star tree if S is
empty). However, it is not at all clear how
to calculate this tree in realistic time for
large-scale inputs; and as is apparent from
the proof of Proposition 1, the resulting tree
is, in general, not a parent tree, even if par-
ent trees exist.

Option (2)—working with rooted trees—
also offers some promise. For example, it
can be shown (see Semple and Steel, 1999)
that a suitable modification of the algo-
rithm developed by Aho et al. (1981) (see
also Constantinescu and Sankoff, 1995; Ng
and Wormald, 1996) provides a supertree
method for rooted trees that satisfies P1-P3
as well as the following two desirable prop-
erties:

"~ P4. Each leaf (taxon) that occurs in at least

one input tree occurs in the output tree.

P5. The time required to compute the out-
put tree grows polynomially with the
total number of species.

Property P4 states that no taxa are dis-
carded, even if the input trees are not com-
patible. Note that this property is not im-
plied by property P3, because P3 applies
only when the input trees are compatible.
Property P5 is desirable if one hopes to
compute an output tree in realistic time for
many input trees involving large numbers
of species (for a recent example of a large-
scale study, see Purvis, 1995b). Methods
that do not have an exact polynomial-time
implementation (such as those based on
maximum parsimony reconstructions) may
nevertheless be approximated by using fast
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heuristic techniques; however, require-
ments (for example, P3) known to be met
by the exact method may no longer be satis-
fied under a heuristic implementation.

Thus, option (2) may offer a promising
line of approach for the development of a
good supertree method. Note that the
“root” of the input trees need not corre-
spond to the temporal (ancestral) root: If,
for example, a collection of unrooted input
trees has the property that some taxon J ap-
pears in the taxa set of each tree, then we
may regard ] in a purely formal way as a
“pseudo-root” and proceed as follows: We
delete taxon | and its incident edge from
each tree to obtain a collection of rooted
trees, the root of each tree being the vertex
that was adjacent to the leaf labeled by
taxon J. We can then apply an algorithm
that amalgamates rooted trees to this collec-
tion of rooted trees, and then reattach taxon
] to the resulting (rooted) output tree by
making it adjacent to the root of this tree.

Unfortunately, selecting as our “pseudo-
root” a different taxon (J) appearing in the
taxa set of each tree may, by the process de-
scribed, lead to a different output tree. Thus
P2 does not necessarily hold across all taxa,
under this form of rooting.

Option (3) is also appealing. For example,
supertree methods based on maximum par-
simony reconstruction may return more
than one tree. This holds also for the con-
sensus tree method described by Wilkinson
(1994). If the collection of input trees is
compatible, one would, ideally, like to de-
scribe the set of all of its parent trees. How-
ever, this set may be very large. For exam-
ple, if there is a parent tree that is highly
unresolved, then any of the many possible
resolutions of this tree would provide a le-
gitimate parent tree, too. Thus, a more real-
istic aim would be to describe the set of all
minimally resolved parent trees. Unfortu-
nately, this set can also be very large, be-
cause one can construct a set of compatible
input trees for which every parent trees is
fully resolved (binary), and yet the number
of these parent trees grows exponentially
with the number of taxa (Bocker, 1999).

Any method that outputs a set of trees,
and satisfies P4 for each output tree, can be
extended to return a single tree by feeding
the output trees into a consensus tree
method. For example, following the ap-

proach of the previous paragraph, given
any collection of compatible input trees, we
could compute the set of all trees (or all
minimally resolved trees) that display each
input tree, and then apply the strict consen-
sus method to all the resulting trees. This is
Gordon’s (1986) consensus supertree for
compatible sets of trees. Restricted to com-
patible sets of input trees, this method fails
P3 (it would return a star tree for the two
trees shown in Fig. 1). However, it satisties
P1, P2, and P4; and, at least for rooted trees,
it also satisfies P5 (Steel, 1992).

LIMITATIONS ON CONSENSUS
TREE METHODS

Given that the input trees in the consen-
sus tree problem all have the same taxa set,
we might hope that the nastiness evident in
Proposition 1 would disappear for such in-
put trees. Indeed, it does; for example, the
“combinable component” consensus method
(also called the “loose” consensus method,
see Bremer, 1990; Barthélemy et al., 1992)
satisfies all properties P1-P5. More popular
methods, such as the majority-rule and
strict consensus methods, also satisfy P1,
P2, P4, and P5, and can be easily modified
to satisfy P3 as well.

One problem with all such methods is
that when the input trees are not compati-
ble, these methods often lead to highly un-
resolved (starlike) output trees, and even
phylogenetic relationships that are shared
by all input trees may disappear in the out-
put tree. We now show that this is inevita-
ble for unrooted phylogenetic trees (in con-
trast to the consensus problem on rooted
trees, where the Adams consensus method
preserves shared phylogenetic relation-
ships; see Adams, 1986).

In other words, we might hope for a con-
sensus method that satisfies the following

property:

P6. If all input trees display (IJ)(KL), then
the output tree displays (I[)(KL).

However, if we retain the requirement
that a consensus method always outputs a
single tree then we have:

Proposition 2. There is no consensus method
for unrooted phylogenetic trees that satisfies
properties P1, P2, and Pé.
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The justification here is similar to that for
the previous proposition. Consider as input
the two trees shown in Figure 1. Both trees
display the trees (12)(45), (34)(16), (56)(23)
and are, furthermore, the only two_phylo-
genetic trees displaying these three quartet
trees simultaneously. Consequently, if P6
were satisfied, the output tree would have
to be one of the two trees in Figure 1.

Now, suppose there were a consensus
method that also satisfied P1 and P2 for
these two input trees. Recall that by the in-
terchange of taxa 2 with 6 and 3 with 5, the
two input trees (in Fig. 1) are interchanged,
and so the unordered set of input trees is
fixed. Consequently, applying method A to
the unordered set consisting of the two in-
put trees must produce an output tree that
remains fixed under the simultaneous in-
terchange of taxa 2 with 6 and 3 with 5. But
as we have seen above, the trees in Figure 1
are in fact interchanged by this property;
given that these were the only candidates
for the output tree, property P6 cannot be
satisfied.

As before, the situation is more appealing
for rooted trees. Let us write (IJ)K to denote
the fully resolved rooted phylogenetic tree
with taxa I and ] on one side and taxon K on
the other side. Then, consider the following
two properties—the first being the analog
of property P6 for rooted trees, the second
being obviously much stronger:

P6’. If all tho input trees display (I/)K, then
the output tree displays (I/)K.
P7. If at least one input tree displays (I))K
and no input tree displays (IK)] or (JK)I,
then the output tree displays (I/)K.

This last condition requires that if at least
one input tree displays a particular tree
(I))K for three species, I, ], and K, and if each
of the other input trees displays either this
tree or an unresolved tree for I, J, and K,
then the tree (IJ)K is displayed by the out-
put tree. ,

Proposition 3. There exists a consensus
method for rooted phylogenetic trees satisfying
properties P1-P5 and P6’; but there is no con-
sensus method for rooted phylogenetic trees that
satisfies property P7.

The Adams consensus method satisfies
P1-P5 and P6'(see Adams, 1986). To justify

the second claim, consider four rooted trees
(Fig. 2), each involving species 1,2, ..., 5,
in which each tree has one nontrivial clus-
ter, thereby grouping together the follow-
ing pairs of taxa: {1,2}, {2,3}, {34}, {4,5}.
These trees display, respectively, the trees
(12)5, (23)5, (34)1, (45)1; and none of the in-
put trees displays (IK)J or (JK)I for any tree
(INK in this list. If there were a consensus
method satisfying P7, then the output tree
would have to display (12)5, (23)5, (34)1,
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FiGURE 2. Four trees with nontrivial clusters {1,2},
{2,3}, {3,4}, {4,5}.
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(45)1. However, it is easily verified that no
rooted phylogenetic tree can display these
last four trees simultaneously.

Comparing Proposition 2 with the first
part of Proposition 3 explains why a natural
analog of the Adams consensus method for
unrooted trees has never been found: It
simply does not exist!

Finally, we remark that although our ar-
guments relied on particular small-scale ex-
amples, they can be extended easily to ap-
ply to larger numbers of taxa.
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