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Abstract.—Given a collection of discrete characters (e.g., aligned DNA sites, gene adjacencies), a common measure of distance
between taxa is the proportion of characters for which taxa have different character states. Tree reconstruction based on
these (uncorrected) distances can be statistically inconsistent and can lead to trees different from those obtained using
character-based methods such as maximum likelihood or maximum parsimony. However, in these cases the distance data
often reveal their unreliability by some deviation from additivity, as indicated by conflicting support for more than one tree.
We describe two results that show how uncorrected (and miscorrected) distance data can be simultaneously perfectly additive
and misleading. First, multistate character data can be perfectly compatible and define one tree, and yet the uncorrected
distances derived from these characters are perfectly treelike (and obey a molecular clock), only for a completely different
tree. Second, under a Markov model of character evolution a similar phenomenon can occur; not only is there statistical
inconsistency using uncorrected distances, but there is no evidence of this inconsistency because the distances look perfectly
treelike (this does not occur in the classic two-parameter Felsenstein zone). We characterize precisely when uncorrected
distances are additive on the true (and on a false) tree for four taxa. We also extend this result to a more general setting that
applies to distances corrected according to an incorrect model. [Additive metric; distance-based phylogeny reconstruction;
inconsistency.]

When distances between species have been estimated
from character data and then either corrected or left un-
corrected, they often fail to fit exactly on any tree. It is
easy to measure how treelike (additive) any collection
of distances is by, for example, looking at their splits
graph (Bandelt and Dress, 1992; Huson, 1998) or other
quartet-based approaches such as delta-plots (Holland
et al., 2002). When the distances are perfectly additive
(i.e., there is some tree T with positive edge weights so
that each given distance between two tip species exactly
matches the path distance in the tree), then the splits
graph will display T exactly. Often however the splits
graph will be a nontree network, and in the case of four
species we may always represent any set of distances ex-
actly by path lengths in a rectangle with one short side
(of length S, equal to zero precisely when the distances
fit a tree) and one long side (L ≥ S) (Fig. 1).

The extent to which distances are treelike (as mea-
sured, for example, by 1 − [S/L]) is often taken as an
indication of their suitability and likely accuracy for tree
reconstruction. Investigators are generally less happy in-
ferring trees from distances when they display conflict-
ing signals, as indicated, for example, by fat rectangles
in the splits graph, than when the distances fit near per-
fectly on a tree.

Here, we provide two results that demonstrate that
additivity is no guarantee of accuracy for uncorrected
distances. Informally, these uncorrected distances sim-
ply count the proportion of characters for which the
taxa have different states. More formally, given a se-
quenceC = ( f1, . . . , fk) of characters on a set X of species,
let

dC(i, j) = |[s : fs(i) �= fs( j)]|
k

,

the (normalized) Hamming distance, or sequence dis-
similarity between species i and j .

The distance measure dC has some appealing proper-
ties. For example, if the characters evolve under any of
the usual stochastic models (e.g., allowing a general time
reversible stationary process, with rates across sites) and
a molecular clock applies, then dC is statistically consis-
tent for tree topology reconstruction. In one recent sim-
ulation study, Holland et al. (2003) found the use of dC
more accurate for tree reconstruction in this setting than
the use of corrected distances. One does not need to know
the fine details of the model (e.g., for aligned DNA se-
quences, these would include parameters relating to rate
variation across sites or nucleotide transition frequen-
cies; for gene order, relevant parameters would relate to
the relative rates of different rearrangement processes);
one can simply apply methods such as neighbor joining
directly to the uncorrected values dC(i, j). The branch
lengths in this case may not be consistently estimated
(they will generally be underestimated, and consistent
estimation requires knowing more of the fine details of
the model).

We show here how the characters C can perfectly favor
one tree (through the eyes of character-based methods
such as compatibility, parsimony, and likelihood), yet the
induced dissimilarities dC can appear to perfectly fit a
totally different tree. We also describe precisely when
dC is perfectly additive on an incorrect tree when the
characters evolve under a certain Markov model. The
proofs of our main results appear in the Appendix.

PERFECT CHARACTERS WITH PERFECTLY
MISLEADING DISTANCES

For any sequence C of perfectly compatible binary
characters, the induced distance dC is additive on the
tree(s) that these characters support (see Semple and
Steel, 2003, proposition 7.1.9). In the case of nonbinary
characters, this statement no longer holds; the distance
dC derived from perfectly compatible characters may no
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FIGURE 1. Any set of distances for four taxa can be represented by
a splits graph of this form.

longer be additive on all or even any of the trees on
which the characters in C are homoplasy free. It might be
hoped that in these cases the induced distances would
reveal their misleading nature by being not particularly
additive (on any tree). However, the following theorem
shows just how wrong this intuition can be. There ex-
ist data sets where the distances look perfectly additive
(indeed clocklike) on one tree, yet they are homoplasy
free only on a completely different tree. This condition
holds for any number of taxa provided the there is a
large enough number of character states. A binary phy-
logenetic tree is one that has no polytomies (i.e., it is fully
resolved).

Theorem 2.1
Let T1 and T2 be any two binary phylogenetic trees on

the same set X of species. Then there exists a sequence C
of multistate characters for which

1. C is homoplasy free for T1 and for no other phyloge-
netic tree on X (including T2).

2. The distances dC derived from C are perfectly additive
on T2 yet they are not additive on any other phyloge-
netic tree on X (including T1). Furthermore, we may
insist that the distances dC fit a molecular clock (i.e.,
are ultrametric) on T2.

Figure 2 illustrates Theorem 2.1 in the simplest case
where |X| = 4.

We may modify Theorem 2.1 to obtain a sequence C
of multistate characters for which T1 has a strictly larger
likelihood score under a symmetric Poisson model than
does any other tree, yet dC is additive only on T2. This

FIGURE 2. (a) Seven characters are homoplasy free on the tree 12|34. (b) Corresponding distances d = 7dC . (c) These distances are perfectly
additive (and clocklike) on the tree 14|23.

follows by adding to C a sufficiently large number of
constant sites and then invoking theorem 7 of Tuffley and
Steel (1997). Our proof of Theorem 2.1 (Appendix) uses a
construction for which the number of character states is
1 less than the number of taxa; however, we suspect this
is merely an artifact of our proof, and a more intricate
argument might be possible using fewer states.

EVOLVING PERFECTLY MISLEADING
UNCORRECTED DISTANCES

The data sets just described were deliberately chosen to
illustrate an extreme phenomenon. Here, we investigate
when precisely characters that evolve under a Markov
process can also provide perfectly deceptive induced dis-
tances. We describe precise conditions for a four-taxon
tree.

Suppose that n sites or characters are generated inde-
pendently on the treeT1 (Fig. 3a). Under the usual models
of DNA evolution, uncorrected distances are generally
not exactly additive; however, they can be additive both
on the “true” tree that generated them and, in another
slice of parameter space, on a false tree. In the later case,
their appearance of being exactly additive may be de-
ceptive, because it shows no evidence of causing a prob-
lem, nevertheless the wrong tree will be inferred from
them.

Uncorrected distances will usually fail to be ex-
actly treelike, but when they are treelike there are two
possibilities:

1. The distances are exactly treelike on the true topology
that generated the data.

2. The distances are exactly treelike on an incorrect
topology.

Situation 1 occurs when there is a molecular clock
(Steel and Penny, 2000: theorem 4); however, there is a
strictly larger region of parameter space where this can
occur.

Regarding situation 2, distance methods can be incon-
sistent (Felsenstein, 1978). However, situation 2 requires
much more than mere inconsistency; not only must the
distances favor a false tree over the true tree, but they
must show no support for any tree other than the false
tree. The subspace of parameter space where this occurs
is the region of perfect inconsistency. This region does
not intersect with the original two-parameter zone de-
scribed by Felsenstein (1978); in that zone there is always
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FIGURE 3. (a) Tree T1 used to generate sequence data. (b) An alter-
native tree T2 on the same set of four taxa.

conflicting support but more support for a false tree. Near
the region of perfect inconsistency, the close fit of the
uncorrected distances could mislead the unwary inves-
tigator into concluding that the reconstructed tree was
accurate (or that the distances did not need correcting).
We illustrate this region with an example and end by
describing a more general result.

First, we will analyze exactly when situations 1 and
2 can arise when the underlying model is the equal in-
put model on r states. This is a time-reversible model
whose transition rate matrix has as its ith row a common
nondiagonal entry πi (which represents the expected fre-
quency of state i in the data). When r = 4, this is the
Tajima–Nei (1984) model, which has a three-parameter
rate matrix, allowing for an arbitrary base composition.
As a special case, when all the base compositions are
equal this model becomes the symmetric Poisson model
(Jukes–Cantor [1969] when r = 4, and the Mk model of
Lewis [2001] when r = k ≥ 4). For the tree T1 displayed
in Figure 3a the values κi represent the expected number
of substitutions on edge i .

Let us generate a sequence C of k characters indepen-
dently under this model. As k becomes large, dC(i, j) con-
verges to its expected value, i.e., the probability that i
and j are in different states under the model, which we
denote p(i, j). Let p = [p(i, j)] be the matrix of values
of p.

We now describe conditions on the κi values for which
the values of p will be perfectly treelike in situations
1 (=treelike on T1) and 2 (=treelike on a different tree,
say the tree T2 with topology 13|24, shown in Fig. 3b). To
describe these results it is useful to let p∞ = 1 − ∑r

i=1 π2
i ,

and for i = 1, . . . , 5, let xi = exp(−κi/p∞). Note that p∞
is the limiting probability that two species are in different
states as their evolutionary distance tends to infinity.

Theorem 3.1
Suppose that p is the matrix of uncorrected dis-

tances generated by tree T1 with edge parameters xi =
exp(−κi/p∞) under the equal-input model.

1. The matrix p is additive on T1 (and only on T1) if and
only if both of the following two conditions apply:

x1 = x2 or x3 = x4 (or both)

and

x5 <
x3x4 + x1x2

x1x3 + x2x4
.

2. The matrix p is additive on T2 (and only on T2) if and
only if the following two conditions apply:

(x1 − x2)(x3 − x4) > 0

and

x5 = x1x2 + x3x4

x1x4 + x2x3
.

We can express the conditions described in Theo-
rem 3.1 purely in terms of the p(i, j) values because the xk
values are determined by the p(i, j) values. For example,

x1 =
√

p(1, 2)p(1, 3)
p(2, 3)

,

and

x5 =
√

p(1, 3)p(2, 4)
p(1, 2)p(3, 4)

.

In part 1, the constraint on parameter space de-
scribed is strictly weaker than the constraint imposed
by a molecular clock. For example, suppose we set
x = (x1, x2, x3, x4, x5) = (0.5, 0.5, 0.2, 0.1, 0.1). These val-
ues for x satisfy the condition in part 1 of Theorem 3.1
and so are additive on T1. However, if we consider the
values of the function p on the pairs of elements cho-
sen from {1, 3, 4}, we obtain three distinct values (i.e.,
p(1, 3), p(1, 4) and p(3, 4) are all different, as can be ver-
ified by applying Equation 5 of the Appendix), and so p
is not an ultrametric. Consequently, because p is a mono-
tone increasing function of evolutionary distance, the κ
values cannot satisfy a molecular clock.

The phenomena described by part 2 of Theorem 3.1
cannot arise under the simple two-parameter Felsenstein
zone setting for which x1 = x3 and x2 = x4 = x5 (i.e., two
long equal-length edges and three short equal-length
edges).

The region for which we have exact additivity (either
on the true tree T1 or on an alternative tree T2) requires
an equality to hold and so is unlikely to hold exactly in
practice. Nevertheless, the result suggests there will be
situations where one will be very close (perhaps indis-
tinguishably close) to additivity.

Example.—Suppose x = (x1, x2, x3, x4, x5) = (0.95, 0.5,
0.75, 0.7, 0.9615385). This value of x satisfies the condi-
tions described in part 2 of Theorem 3.1. Given a tree
based on these values, we used the program SeqGen
(Rambaut and Grassly, 1997) to generate 100 simulated
data sets for each of the sequence lengths 100, 500, 1,000,
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TABLE 1. For each of the sequence lengths, we generated 100 simulated data sets on the tree described in the text. For uncorrected and corrected
distances, we list the percentage of true trees and false trees recovered, respectively. We also report the mean tree-likeness score: 1 − (S/L).

Uncorrected distances Corrected distances

True tree False tree True tree False tree

Length % Mean score % Mean score % Mean score % Mean score

100 22 0.69 78 0.56 51 0.62 49 0.53
500 24 0.44 76 0.50 83 0.59 17 0.40

1,000 16 0.46 84 0.56 92 0.62 8 0.25
5,000 0 100 0.72 100 0.77 0

10,000 1 0.07 99 0.78 100 0.83 0
100,000 0 100 0.92 100 0.95 0

5,000, 10,000, and 100,000. Table 1 summarizes the results,
which show an increasing tree-likeness score with se-
quence length, both for the uncorrected distances (which
converge to a false tree) and the corrected distances
(which converge to the true tree).

An extension.—The region of perfect inconsistency is
not particular to the equal input model; it may also arise
when distances are corrected according to an incorrect
model. For most models of site substitution where un-
corrected or miscorrected distances can be inconsistent,
there is a corresponding and nonempty region of per-
fect inconsistency. By a standard model, we mean any
model of nucleotide substitution for which p(i, j) can
be written as some function f of the total evolution-
ary distance (sum of the edge lengths) separating se-
quences i and j . Virtually all models used in molecular
systematics are standard, including the general time re-
versible (GTR) model (with or without rate variation)
and covarion-type models. To emphasize the depen-
dence of p on κ = (κ1, . . . , κ5), we will write pκ . Sup-
pose that g is some continuous function that is applied
to dC . We think of g either as the identity function (i.e.,
uncorrected distances) or some function that attempts
to correct distances but is subject to an incorrect model
(perhaps due to undercorrection).

For any distance function d on X = {1, 2, 3, 4} and or-
dering i, j, k, l of X, let si j |kl(d) = g[d(i, j)] + g[d(k, l)],
and let S(d) = [s12|34(d), s13|24(d), s14|23(d)]. For a sequence
C of characters on the set X = {1, 2, 3, 4}, most distance
methods, such as neighbor joining, applied to the dis-
tances g[dC(i, j)] will select tree i j |kl precisely if si j |kl(dC)
is the smallest value of S(dC) (Gascuel, 1997).

To investigate inconsistency, we replace dC in the above
expressions by its expected value, pκ . Let min S(pκ ) and
max S(pκ ) denote the minimal and maximal elements of
S(pκ ). Then κ is a strong inconsistency parameter value
under g-correction if the following two conditions hold:

1. s12|34(pκ ) �∈ {min S(pκ ), max S(pκ )} (SI1).
2. If κ ′

i = κi for i = (3, 4, 5) and κ ′
1 and κ ′

2 both lie between
κ1 and κ2, then s12|34(pκ ′ ) �= min S(pκ ′ ) (SI2).

One motivation for this definition is that strong in-
consistency values arise in classic Felsenstein zone set-
tings with uncorrected distances. For example, under the
equal input model, if we set x1 = x3 = ε (long edges) and

x2 = x4 = x5 = 1 − ε (short edges), then for a sufficiently
small positive value of ε it can be verified that conditions
SI1 and SI2 both hold.

For a range of models, and at least some functions g
(e.g., those that are close to the identity function, which
correspond to undercorrection), we may therefore ex-
pect there to be a corresponding strong inconsistency
parameter value κ . In such cases, the following result
guarentees there is a corresponding nonempty region of
perfect inconsistency.

Theorem 3.2
For sequences generated by the standard model on T1,

suppose that there is a strong inconsistency parameter
valueκ under g-correction. Then, there exists a nonempty
region of perfect inconsistency for this model, i.e., param-
eters for which the expected sequence dissimilarities, af-
ter they have been corrected according to g, are perfectly
additive on a tree that is different from T1.

CONCLUDING COMMENTS

For topology estimation under clocklike models, the
use of dC may be preferable to corrected distances that
have higher variance or when the fine details of the
model are unclear. The catch is the invocation of a
molecular clock. Where evolution is not clocklike, the
raw distance measure dC can be seriously misleading.
These distances can favor incorrect topologies. We have
demonstrated that this can occur without any hint that
there is a problem in terms of conflicting signal. Tech-
niques such as SplitsTree (Huson, 1998) often provide a
useful visual representation of conflicting phylogenetic
signal present in distance data. Generally, the absence of
conflict should provide some confidence in the output,
because the conditions for perfect inconsistency are quite
special. Nevertheless, that there even exists such a region
should be taken as a caution. The message is simple: a
(near) perfect fit of raw distance data to some tree does
not necessarily confer confidence in the accuracy of the
tree.
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APPENDIX
PROOF OF RESULTS

Proof of Theorem 2.1
Throughout this proof, let n = |X|, B = (n

2

) − 1. Let D1(i, j) denote
the number of interior edges in T1 that separate i and j . On T2, assign
edge weight 1 to all interior edges, and assign to each exterior (pendant)
edge a nonnegative integer edge weight in such a way that the induced
metric on X (denote by D2) is an ultrametric. Thus, D2 is additive on T2

and no other tree, and we can represent D2 on T2 with a edgeweighting
that satisfies a clock (i.e., the distance from some vertex or the midpoint
of some edge to all the leaves is the same).

Let S = ∑
i, j [D2(i, j) − D1(i, j)], and select a positive integer r suffi-

ciently large that for all i, j ∈ X we have

r − B[D2(i, j) − D1(i, j)] + S ≥ 0. (1)

Let C1 be the set of n − 3 binary characters (one for each interior
edge of T1) that correspond to the splits of T1. Thus, T1 is the only
phylogenetic tree on X on which C1 is homoplasy free. For a pair of
species i, j ∈ X, a character is of type i j if i and j are the only two
species in X that are assigned the same character state.

Let C2 consist of the following sequence of characters. For each dis-
tinct pair i, j ∈ X, place ni j characters of type i j in C2 where

ni j = r − B[D2(i, j) − D1(i, j)] + S (2)

(by Eq. 1 this is a nonnegative integer). Let C be the concatenation
of C2 and B copies of C1. A character of type i j is homoplasy free on

any phylogenetic tree on X. Thus, C is homoplasy free on T1 and only
on T1. It is easily checked that for each distinct pair i, j ∈ X, if we let
DC be the (nonnormalized) Hamming distance defined by DC(i, j) =
|[s : fs (i) �= fs ( j)]|, then

DC(i, j) = B · D1(i, j) + N − ni j , (3)

where N := ∑
i, j ni j . Let D′

2(i, j) = B · D2(i, j) + r B for each i, j ∈ X.
Then, D′

2 is an ultrametric that is additive on T2 and no other tree
(because D2 has this property). Furthermore, substituting Equation 2
into Equation 3 and reducing the resulting equation gives DC(i, j) =
D′

2(i, j) for all i, j ∈ X. Thus, DC(i, j) is precisely the distance in T2 with
the edge weighting as specified. Consequently, DC and thereby dC are
perfectly additive on T2, as claimed. By the assumption that T2 is binary
and because all the edge weight assignments described are positive, it
follows that dC is additive only on T2. This completes the proof.

Proof of Theorem 3.1
This proof relies on elementary algebra, with repeated application

of the formal identity:

(xi − xj )(xk − xl ) = xi xk + xj xl − (xi xl + xj xk ) (4)

together with the relationship

p(i, j) = p∞


1 −

∏
k∈P(T1 ;i, j)

xk


, (5)

where P(T1; i, j) is the set of edges in T1 on the path connecting i and
j (Semple and Steel, 2003).

Proof of part 1.—By the four-point condition, p is additive (only)
on T1 precisely if

p(1, 2) + p(3, 4) < p(1, 3) + p(2, 4) = p(1, 4) + p(2, 3),

and this translates (by virtue of Eq. 5) to the conditions

(x1x3 + x2x4)x5 = (x1x4 + x2x3)x5 (6)

and

x1x2 + x3x4 > (x1x3 + x2x4)x5. (7)

Now, applying Equation 4 (for i, j, k, l = 1, 2, 3, 4), Equation 6 is equiv-
alent to the condition (x1 − x2)(x3 − x4) = 0, that is, x1 = x2 or x3 = x4

(or both). Similarly, Equation 7 is equivalent to the condition: x5 <

(x1x2 + x3x4)/(x1x3 + x2x4). These are the conditions described in part 1
of Theorem 3.1.

Proof of part 2.—By the four-point condition, p is additive (only)
on T2 precisely if

p(1, 3) + p(2, 4) < p(1, 2) + p(3, 4) = p(1, 4) + p(2, 3),

and this translates to the condition

(x1x3 + x2x4)x5 > x1x2 + x3x4 = (x1x4 + x2x3)x5. (8)

Comparing the first and last term in Equation 8, we obtain x1x3 + x2x4 −
x1x4 − x2x3 > 0, which by Equation 4 is equivalent to the condition
(x1 − x2)(x3 − x4) > 0. The equality of the last two terms in Equation 8
is equivalent to the condition x5 = (x1x2 + x3x4)/(x1x4 + x2x3). This com-
pletes the proof.
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Proof of Theorem 3.2
Let κ be a strong inconsistency value under g-correction. Without

loss of generality, by SI1 we have

s13|24(pκ ) < s12|34(pκ ) < s14|23(pκ ).

Let κ∗ be the parameter value obtained by interchanging κ1 and κ2

in κ :

s12|34(pκ∗ ) = s12|34(pκ )

s13|24(pκ∗ ) = s14|23(pκ )

and

s14|23(pκ∗ ) = s13|24(pκ ).

For t ∈ [0, 1], let κ t = tκ + (1 − t)κ∗ and let h(t) = s14|23(pκ t ) −
s12|34(pκ t ). Thus, h(0) < 0, h(1) > 0, and so. Because h is continuous,
there exists a value t0 ∈ (0, 1) for which h(t0) = 0. Let κ0 = κ t0 . Note that
κ0

i = κi for i = (3, 4, 5), and so by (SI2) we have

s13|24(pκ0 ) < s12|34(pκ0 ) = s14|23(pκ0 ),

and so κ0 is a point of perfect inconsistency. This completes the proof.


