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Applying a method to reconstruct a phylogenetic tree from random data provides a way to detect
whether that method has an inherent bias towards certain tree ‘shapes’. For maximum parsimony,
applied to a sequence of random 2-state data, each possible binary phylogenetic tree has exactly the same
distribution for its parsimony score. Despite this pleasing and slightly surprising symmetry, some binary
phylogenetic trees are more likely than others to be a most parsimonious (MP) tree for a sequence of k
such characters, as we show. For k ¼ 2, and unrooted binary trees on six taxa, any tree with a caterpillar
shape has a higher chance of being an MP tree than any tree with a symmetric shape. On the other hand, if
we take any two binary trees, on any number of taxa, we prove that this bias between the two trees van-
ishes as the number of characters k grows. However, again there is a twist: MP trees on six taxa for k ¼ 2
random binary characters are more likely to have certain shapes than a uniform distribution on binary
phylogenetic trees predicts. Moreover, this shape bias appears, from simulations, to be more pronounced
for larger values of k.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

The ‘shape’ of reconstructed evolutionary trees is of interest
to evolutionary biologists, as it should provide some insight into
the processes of speciation and extinction (Aldous, 2001; Aldous
et al., 2011; Hey, 1992; Holton et al., 2014; Lambert et al.,
2013; Stadler, 2013). In this paper, ‘shape’ refers just to the
discrete shape of the tree (i.e. we ignore the branch lengths);
the advantages of this are that it simplifies the analysis, and
it also confers a certain robustness (i.e. the resulting probability
distribution on discrete shapes is often independent of the fine
details of an underlying speciation/extinction model (Aldous,
1995; Lambert et al., 2013)). For example, if all speciation
(and extinction) events affect all taxa at any given epoch in
the same way, then we should expect the shape of a recon-
structed tree to be that predicted by the discrete ‘Yule–Harding’
model (Aldous, 2001; Harding, 1971; Lambert et al., 2013). In
fact, a general trend (see e.g. Aldous, 2001) is that the shape
of phylogenetic trees reconstructed from biological data tends
to be a little less balanced than this model predicts, but is more
balanced than what would be obtained under a uniform model
in which each binary phylogenetic tree has the same probability
(this model is sometimes also called the ‘Proportional-to-
Distinguishable-Arrangements’ (PDA) model (Rosen, 1978)).

There are, however, other factors which can lead to biases in
tree shape. One is non-random sampling of the taxa on which to
construct a tree (influenced, for example, by the particular inter-
ests of the biologists or the application of a certain strategy to sam-
ple taxa). Another cause of possible bias is that a tree
reconstruction method may itself have an inherent preference
towards certain tree shapes. A way to test this latter possibility is
to apply the tree reconstruction method to data that contain no
phylogenetic signal at all, in particular, purely random data, where
each character is generated independently by a process that
assigns states to the taxa uniformly (e.g. by the toss of a fair coin
in the case of two states). For some methods, such as ‘TreePuzzle’,
such data leads to very balanced trees (similar to the Yule–Harding
model (Vinh et al., 2010; Zhu et al., 2013)). However, other meth-
ods, such as maximum likelihood and maximum parsimony, lead
to less balanced trees, that are closer in shape to the uniform
model, as recently reported in Holton et al. (2014). In the case of
maximum parsimony, the two-state symmetric model has the
even-handed property that every binary tree has exactly the same
distribution of its parsimony score on k randomly generated char-
acters. Thus, it might be supposed that the maximum parsimony
(MP) tree for such a sequence of characters would also follow a
uniform distribution. However, while this holds in special cases,
it does not hold in general, as we show below.
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1.1. Trees and parsimony: definitions and basic properties

In phylogenetics, graphs, especially trees, are used to describe
the ancestral relationships among different species. A main goal
of phylogenetics is to infer an evolutionary tree from data available
from present-day species. In graph theory, a tree T ¼ ðV ; EÞ consists
of a connected graph with no cycles. Certain leaf-labelled trees
(‘phylogenetic trees’) are widely used where the set of extant spe-
cies label the leaves and the remaining vertices represent ancestral
speciation events (Felsenstein, 2004). There are different methods
of reconstructing a phylogenetic tree. One of the most famous tree
reconstruction methods is maximum parsimony. For a given tree
and discrete character data, the parsimony score can be found in
polynomial time by using the Fitch–Hartigan algorithm (Fitch,
1971; Hartigan, 1973). The parsimony score counts the number
of changes (mutations) required on the tree to describe the data.
This problem of finding the optimal parsimony score for a given
tree is often called the ‘small parsimony’ problem. The ‘big parsi-
mony’ problem aims at finding the most parsimonious tree (‘MP
tree’) amongst all possible trees. This problem has been proven
to be NP-hard (Foulds and Graham, 1982).

In this paper, we assume that each taxon from the leaf set X of
the tree is assigned a binary state (0 or 1) independently, and with
equal probability (the case where the two states have different
probabilities is less interesting, since then the distribution of the
parsimony score of a fixed binary tree is easily seen to depend
on the shape of the tree, even for a single character). This process
is then repeated (also independently) to generate a sequence of
characters (defined formally below). For binary trees with random
data, we are interested in the probability that a tree is an MP tree,
and also what happens when the length of the sequences or the
number of leaves gets larger. In particular, we wish to determine
whether each tree is equally likely to be selected as an MP tree.

Definition 1 (Binary phylogenetic trees). An (unrooted) binary phy-
logenetic X-tree is a tree T with leaf set X and with every interior
(i.e. non-leaf) vertex of degree exactly three. We will let UBðXÞ be
the set of unrooted binary phylogenetic X-trees. When
X ¼ ½n� ¼ f1; . . . ;ng, we will write UBðnÞ.
Definition 2. [Character, extension, parsimony score]

� A character on X over a finite set R of character states is any
function f from X into R; f : X ! R. In this paper we will con-
sider two-state characters; f : X ! f0;1g.
� A function �f : V ! R such that �f jX ¼ f is said to be an extension of

f since it describes an assignment of states to all vertices of T
that agrees with the states that f stipulates at the leaves.
� Let chð�f ; TÞ :¼ fe ¼ fu;vg 2 E : �f ðuÞ – �f ðvÞg

�� �� be the changing
number of �f . Given a character f : X ! R, the parsimony score of
f on T, denoted psðf ; TÞ, is the smallest changing number of any
extension of f, i.e.:
psðf ; TÞ :¼ min
�f :V!R;�f jX¼f

fchð�f ; TÞg:
An extension �f of f for which chð�f ; TÞ ¼ psðf ; TÞ is said to be a
minimal extension.
Let C ¼ ðf 1; . . . ; f kÞ be a sequence of characters on X. The
parsimony score of C on T, denoted psðC; TÞ, is defined by
psðC; TÞ :¼

Pk
i¼1psðf i; TÞ.

2. Comparing given trees

Let XkðTÞ be the parsimony score of k random two-state charac-
ters on T 2 UBðnÞ. We will see shortly (Proposition 1) that the
distribution of XkðTÞ does not depend on the shape of T; it just
depends on n. Notice that XkðTÞ ¼ X1 þ X2 þ � � � þ Xk, where Xi

(for i ¼ 1; . . . ; kÞ form a sequence of independent and identically
distributed random variables (with common distribution X1ðTÞ).
If PðXkðTÞ ¼ lÞ denotes the probability that T has parsimony score
l then, from Steel (1993), we have, for each l 2 ½1; bn=2c�:

PðX1ðTÞ ¼ lÞ ¼ 2n� 3l
l
�

n� l� 1
l� 1

� �
� 2l�n; ð1Þ

with PðX1ðTÞ ¼ 0Þ ¼ 21�n and PðX1ðTÞ ¼ lÞ ¼ 0 for l > bn=2c. Fur-

thermore, E½X1ðTÞ� ¼
3n�2� �1

2ð Þ
n�1

9 � n
3 is the expected parsimony score

of T, and E½XkðTÞ� ¼ k � E½X1ðTÞ�. An immediate consequence of (1) is
the following.

Proposition 1. For every k P 1 and n P 2, the distribution of the
parsimony score of k independent random binary characters (i.e.
XkðTÞ) is the same for all T 2 UBðnÞ.
2.1. Comparing two trees by their parsimony score

We begin this section by describing a tree rearrangement opera-
tion on binary phylogenetic trees (Semple and Steel, 2003, Chapter
2.6), namely tree bisection and reconnection (TBR). Let T be a binary
phylogenetic X-tree and let e ¼ fu;vg be an edge of T. A TBR opera-
tion is described as follows. Let T 0 be the binary tree obtained from
T by deleting e, adding an edge between a vertex that subdivides
an edge of one component of T n e and a vertex that subdivides an
edge of the other component of T n e, and then suppressing any
resulting degree-two vertices. In the case that a component of T n e
consists of a single vertex, then the added edge is attached to this
vertex. T 0 is said to be obtained from T by a single TBR operation.

Proposition 2. Let T; T 0 2 UBðnÞ.

� (i) If T and T 0 are one TBR apart, then PðXkðTÞ < XkðT 0ÞÞ ¼
PðXkðT 0Þ < XkðTÞÞ holds for all k P 1.
� (ii) If T and T 0 are more than one TBR apart, then the equality

PðXkðTÞ < XkðT 0ÞÞ ¼ PðXkðT 0Þ < XkðTÞÞ can fail, even for k ¼ 1
and n ¼ 6.
Proof.

(i) From Bryant (2004, Lemma 5.1), if T and T 0 are one TBR apart
then for any character f, psðf ; TÞ � psðf ; T 0Þ

�� �� 6 1. In
particular,
X1ðTÞ � X1ðT 0Þ
�� �� 6 1: ð2Þ
For k P 1, let Dk ¼ XkðTÞ � XkðT 0Þ. Then if T; T 0 2 UBðnÞ are one
TBR apart, then D1 ¼ X1ðTÞ � X1ðT 0Þ is either 0; 1 or �1, by (2).
Moreover, PðD1 ¼ mÞ ¼ PðD1 ¼ �mÞ for all m 2 f0;1� 1g, since
E½D1� ¼ 0, by Proposition 1. Furthermore, Dk ¼ D1 þ � � � þ Dk,
where D1; . . . ;Dk are independent and identically distributed as
D1, so we have:
PðDk ¼mÞ¼
X

m1; . . . ;mk 2f�1;0;1g :

m1þ�� �þmk ¼m

PðD1 ¼m1 ^D2 ¼m2 ^�� �^Dk ¼mkÞ

¼
X

m1 ; . . . ;mk 2f�1;0;1g :

m1þ�� �þmk ¼m

Yk

j¼1

PðDj ¼mjÞ¼
X

m1; . . . ;mk 2f�1;0;1g :

m1þ�� �þmk ¼m

Yk

j¼1

PðDj ¼�mjÞ

¼
X

m01 ; . . . ;m
0
k 2f�1;0;1g :

m01þ�� �þm0k ¼�m

P D1 ¼m01 ^D2 ¼m02 ^�� �^Dk ¼m0k
� �

¼PðDk ¼�mÞ:
This provides the equality PðXkðTÞ < XkðT 0ÞÞ ¼ PðXkðT 0Þ < XkðTÞÞ
for all k P 1.



M. Fischer et al. / Molecular Phylogenetics and Evolution 80 (2014) 165–168 167
(ii) We prove this by exhibiting one counterexample, namely
the trees shown in Fig. 1. Let Dk ¼ XkðTÞ � XkðT 0Þ. The equal-
ity PðXkðTÞ < XkðT 0ÞÞ ¼ PðXkðT 0Þ < XkðTÞÞ is equivalent to
PðDk < 0Þ ¼ PðDk > 0Þ.

By calculating the parsimony score for the 32 different two-
state characters (without loss of generality we set f ð1Þ :¼ 0)
we can assign the values that D1 can take and the probability
of those values. D1 ¼ �2 occurs precisely when X1ðTÞ ¼ 1
and X1ðT 0Þ ¼ 3 with probability p ¼ 1

32. D1 ¼ �1 occurs pre-
cisely when X1ðTÞ ¼ 1 and X1ðT 0Þ ¼ 2 or X1ðTÞ ¼ 2 and
X1ðT 0Þ ¼ 3 with probability q ¼ 3

32. D1 ¼ þ1 occurs precisely
when X1ðTÞ ¼ 2 and X1ðT 0Þ ¼ 1 or X1ðTÞ ¼ 3 and X1ðT 0Þ ¼ 2
with probability r ¼ 5

32. Since D1 ¼ þ2 is not possible, D1 ¼ 0
with probability 1� ðpþ qþ rÞ ¼ 23

32. This leads to

PðD1 < 0Þ ¼ PðD1 ¼ �2Þ þPðD1 ¼ �1Þ ¼ 4
32 <

5
32 ¼ PðD1 ¼ þ1Þ

¼ PðD1 > 0Þ. Therefore PðXkðTÞ < XkðT 0ÞÞ < PðXkðT 0Þ < XkðTÞÞ
holds for k ¼ 1 and the choice of T and T 0 shown in Fig. 1. In
other words, the probability that the symmetric tree T is
more parsimonious than the caterpillar tree T 0 (on a single
random binary character) is higher than the probability that
T 0 is more parsimonious than T. h
3. Maximum parsimony trees

Definition 3 (Maximum parsimony tree). Given a sequence
C ¼ ðf 1; . . . ; f kÞ of characters on X, a phylogenetic tree T on X that
minimises psðC; TÞ is said to be a maximum parsimony (MP) tree for
C. The corresponding ps-value is the parsimony or MP score of C,
denoted psðCÞ.

Notation: Given T 2 UBðnÞ, let mpkðTÞ denote the probability
that T is an MP tree for k P 1 random two-state characters on
½n�. That is

mpkðTÞ :¼ PðXkðTÞ 6 min
T 02UBðnÞ

fXkðT 0ÞgÞ:

Notice that mpkðTÞ is not a probability distribution on UBðnÞ since
the positive probability of ties for the most parsimonious tree
ensures that the mpkðTÞ values will sum to a value greater than 1.

Lemma 1. If T1; T2 2 UBðnÞ have the same shape then
mpkðT1Þ ¼ mpkðT2Þ.
Proof. Let k P 1 and let f 1; . . . ; f k be two-state characters. Then
psðf 1; . . . ; f k; TÞ ¼ ps f r

1 ; . . . ; f r
k ; T

r� �
, where r is an element of the
Fig. 1. Two trees T; T 0 2 UBð6Þ. Note that T
group Sn of permutations on the leaf set ½n� of T. Notice that the
map f ¼ ðf 1; . . . ; f kÞ# f r ¼ f r

1 ; . . . ; f r
k

� �
is a bijection, so the number

of characters f for which T is an MP tree for f equals the number of
characters f for which Tr is an MP tree for f. h

It follows from Proposition 1 and Lemma 1 that if n P 3 and
k ¼ 1, or if k P 1 and n 6 5, then mpkðTÞ is constant for all
T 2 UBðnÞ. However, this does not hold more generally, as we
now state.

Theorem 1. mpkðTÞ is not constant for all T 2 UBðnÞ when n ¼ 6 and
k ¼ 2. In particular, any given caterpillar tree (like T in Fig. 1) has a
higher probability of being an MP tree than a symmetric tree (like T 0 in
Fig. 1).

The proof of Theorem 1 requires a detailed case analysis to
identify the MP tree(s) for all pairs of characters ðf 1; f 2Þ; details
are provided in the online supplementary material. The result is
also confirmed by simulations, which are provided in the following
section.

4. Asymptotic analysis

We first show that the bias exhibited in Proposition 2(ii) disap-
pears asymptotically but the bias apparent in Theorem 1 does not.

Proposition 3. For all T; T 0 2 UBðnÞ and all n:

lim
k!1

PðXkðTÞ < XkðT 0ÞÞ ¼
1
2
:

Proof. Let T; T 0 2 UBðnÞ and k P 1, and let Dk ¼ XkðTÞ � XkðT 0Þ ¼
D1 þ D2 þ � � � þ Dk, where the random variable Di ¼ psðf i; TÞ �
psðf i; T

0Þ ði ¼ 1; . . . ; kÞ and the Di are independent and identically
distributed. Moreover E½Di� ¼ 0 and Di has a standard deviation r
that is strictly positive and finite. To see that r > 0, note that
r2 P P½Di – 0� by Chebychev’s inequality, and Di is nonzero when-
ever f i corresponds to a two-state character that has parsimony
score 1 on one of the trees T; T 0 and parsimony score greater than
1 on the other tree (at least one such character must exist, since
T – T 0, and every tree is uniquely determined by its characters of
parsimony score 1). We can now apply the standard central limit
theorem to deduce that for an asymptotically standard normal var-
iable Zk ¼ Dk�E½Dk �

r�
ffiffi
k
p , we have:

PðDk < 0Þ ¼ P Zk <
0� 0

r �
ffiffiffi
k
p

� �
�!k!1 1

2
: �
and T 0 are more than one TBR apart.



Table 1
Overview of simulation results: For each alignment length, 1000 runs were evaluated.

Al. length Av. # MP trees # Symmetric tree was MP # Caterpillar was MP # Symmetric MP trees
#MP trees

2 17.177 2375 14,802 0.138266
10 3.908 365 3543 0.0933982
100 1.622 119 1503 0.0733662
1000 1.166 59 1107 0.0506003
10,000 1.053 57 996 0.0541311
100,000 1.013 46 967 0.0454097
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Finally, we consider the limiting behaviour of mpkðTÞ as k!1,
and present simulations that suggest that even for n ¼ 6, this prob-
ability depends on the shape of the tree. It is easily shown that, for
any n > 1, as k!1, there is a unique most parsimonious tree, soP

T2UBðnÞlimk!1mpkðTÞ ¼ 1 (see e.g. (Zhu et al., 2013) (Theorem

4(2)). In other words, limk!1mpkðTÞ is a probability distribution
on UBðnÞ. However, the additional claim there that mpkðTÞ is uni-
form on UBðnÞ does not hold when n ¼ 6 and when either k ¼ 2
(Theorem 1) or, it seems, as k!1, as we now explain.
4.1. Simulations

We used the computer algebra system Mathematica to generate
alignments of lengths 2, 10, 100, 1,000, 10,000 and 100,000, respec-
tively, by sampling characters for six taxa uniformly at random out
of the 32 possible binary characters (we assume without loss of
generality that the state of taxon 1 is fixed, say, to state 0, whereas
all other taxa can choose states 0 or 1). For each alignment, we ran
an exhaustive search through the tree space of 105 unrooted bin-
ary phylogenetic trees in order to find all MP trees. For each align-
ment length, we did 1000 runs and we counted the average
number of MP trees, as well as the number of times that each of
the two tree shapes for six taxa (the caterpillar shape or the sym-
metric shape of T and T 0 in Fig. 1) were amongst the MP trees. We
then calculated the ratio of the number of MP trees with a symmet-
ric shape divided by the total number of MP trees. Note that this
ratio should equal 1

7 � 0:142857 under the uniform (PDA) model,
because 15 out of the 105 possible binary trees on six leaves have
the symmetric shape (in general, the number of unrooted binary
trees having shape s is n!=sðsÞwhere sðsÞ is the number of leaf per-
mutations that fix the topology of a tree having shape s; this gives
6!=ð3!2!3Þ ¼ 15 in our case; for further details see (Semple and
Steel, 2003, Section 2.4). However, the last column of Table 1
reveals that only for the extremely short alignment of length 2
the ratio is close to this value in our simulations (and it is not
exactly equal to it, by Theorem 1). Moreover, the ratio decreases
away from 1

7 as the alignment length increases (the small variation
at alignment length 10,000 is within one standard deviation). This
trend and the reported values strongly suggest that the limiting
value of mpkðTÞ is not uniform across all trees in UBð6Þ. Note also
that column 2 of Table 1 is also consistent with the finding men-
tioned earlier that there will be a unique MP tree with probability
converging to 1 as k grows.

4.2. Concluding comments

In one sense, the two-state symmetric model is as favourable to
all binary phylogenetic trees as is possible under maximum parsi-
mony, since each tree has exactly the same probability distribution
on the parsimony score of k random characters. Moreover, Propo-
sition 3 shows that no one tree is any more likely to be an MP tree
than another. It may seem somewhat surprising, therefore, that the
distribution of MP trees is not uniform, even asymptotically; how-
ever this has a simple explanation. Although the characters are
generated independently, and their parsimony scores is also inde-
pendently distributed on any given binary tree, the MP binary tree
is chosen once the k characters are given. Thus these characters are
not independent random variables once we condition on a given
tree being the MP tree for these characters. Moreover, once one
moves away from the simple two-state model (for example, to
the r-state symmetric model, or the 2-state non-symmetric model)
even the uniformity of MP scores on fixed trees disappears (Steel,
1993). In summary, while maximum parsimony on random data
seems, in certain senses (described above), to favour each binary
tree equally, the method nevertheless exhibits a bias towards trees
with certain tree shapes.

Acknowledgments

We thank the Allan Wilson Centre for help funding this work.
We also thank David Bryant for pointing out that MP trees might
not be uniformly distributed on sequences of random characters,
and an anonymous reviewer for some helpful suggestions.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.ympev.2014.
07.010.

References

Aldous, D., 1995. Probability distributions on cladograms. In: Aldous, D., Pemantle,
R.E. (Eds.), Random Discrete Structures, IMA Volumes in Mathematics and its
Applications, vol. 76. Springer, pp. 1–18.

Aldous, D., 2001. Stochastic models and descriptive statistics for phylogenetic trees,
from Yule to today. Stat. Sci. 16, 23–34.

Aldous, D., Krikun, M., Popovic, L., 2011. Five statistical questions about the tree of
life. Syst. Biol. 60, 318–328.

Bryant, D., 2004. The splits in the neighborhood of a tree. Ann. Comb. 8, 1–11.
Felsenstein, J., 2004. Inferring Phylogenies. Sinauer Associates.
Fitch, W.M., 1971. Towards defining the course of evolution: minimum change for a

species tree topology. Syst. Zool. 20, 406–416.
Foulds, L.R., Graham, R.L., 1982. The Steiner problem in phylogeny is NP-complete.

Adv. Appl. Math. 3, 43–49.
Harding, E.F., 1971. The probabilities of rooted tree shapes generated by random

bifurcation. Adv. Appl. Math. 3, 44–77.
Hartigan, J.A., 1973. Minimum mutation fits to a given tree. Biometrics 29, 53–65.
Hey, J., 1992. Using phylogenetic trees to study speciation and extinction. Evolution

46, 627–640.
Holton, T.A., Wilkinson, M., Pisani, D., 2014. The shape of modern tree

reconstruction methods. Syst. Biol. 63 (3), 436–441.
Lambert, A., Stadler, T., 2013. Birth–death models and coalescent point processes:

the shape and probability of reconstructed phylogenies. Theor. Popul. Biol. 90,
113–128.

Rosen, D.E., 1978. Vicariant patterns and historical explanation in biogeography.
Syst. Biol. 27, 159–188.

Semple, C., Steel, M., 2003. Phylogenetics. Oxford University Press (Oxford Lecture
Series in Mathematics and its Application).

Stadler, T., 2013. Recovering speciation and extinction dynamics based on
phylogenies. J. Evol. Biol. 26, 1203–1219.

Steel, M.A., 1993. Distributions on bicoloured binary trees arising from the principle
of parsimony. Discr. Appl. Math. 41 (3), 245–261.

Vinh, L.S., Fuehrer, A., von Haeseler, A., 2010. Random tree-puzzle leads to the Yule–
Harding distribution. Mol. Biol. Evol. 28 (2), 873–877.

Zhu, S., Steel, M., 2013. Does random tree puzzle produce Yule–Harding trees in the
many-taxon limit? Math. Biosci. 243, 109–116.

http://dx.doi.org/10.1016/j.ympev.2014.07.010
http://dx.doi.org/10.1016/j.ympev.2014.07.010
http://refhub.elsevier.com/S1055-7903(14)00253-X/h0005
http://refhub.elsevier.com/S1055-7903(14)00253-X/h0005
http://refhub.elsevier.com/S1055-7903(14)00253-X/h0005
http://refhub.elsevier.com/S1055-7903(14)00253-X/h0010
http://refhub.elsevier.com/S1055-7903(14)00253-X/h0010
http://refhub.elsevier.com/S1055-7903(14)00253-X/h0015
http://refhub.elsevier.com/S1055-7903(14)00253-X/h0015
http://refhub.elsevier.com/S1055-7903(14)00253-X/h0020
http://refhub.elsevier.com/S1055-7903(14)00253-X/h0025
http://refhub.elsevier.com/S1055-7903(14)00253-X/h0030
http://refhub.elsevier.com/S1055-7903(14)00253-X/h0030
http://refhub.elsevier.com/S1055-7903(14)00253-X/h0035
http://refhub.elsevier.com/S1055-7903(14)00253-X/h0035
http://refhub.elsevier.com/S1055-7903(14)00253-X/h0040
http://refhub.elsevier.com/S1055-7903(14)00253-X/h0040
http://refhub.elsevier.com/S1055-7903(14)00253-X/h0045
http://refhub.elsevier.com/S1055-7903(14)00253-X/h0050
http://refhub.elsevier.com/S1055-7903(14)00253-X/h0050
http://refhub.elsevier.com/S1055-7903(14)00253-X/h0055
http://refhub.elsevier.com/S1055-7903(14)00253-X/h0055
http://refhub.elsevier.com/S1055-7903(14)00253-X/h0060
http://refhub.elsevier.com/S1055-7903(14)00253-X/h0060
http://refhub.elsevier.com/S1055-7903(14)00253-X/h0060
http://refhub.elsevier.com/S1055-7903(14)00253-X/h0065
http://refhub.elsevier.com/S1055-7903(14)00253-X/h0065
http://refhub.elsevier.com/S1055-7903(14)00253-X/h0070
http://refhub.elsevier.com/S1055-7903(14)00253-X/h0070
http://refhub.elsevier.com/S1055-7903(14)00253-X/h0075
http://refhub.elsevier.com/S1055-7903(14)00253-X/h0075
http://refhub.elsevier.com/S1055-7903(14)00253-X/h0080
http://refhub.elsevier.com/S1055-7903(14)00253-X/h0080
http://refhub.elsevier.com/S1055-7903(14)00253-X/h0085
http://refhub.elsevier.com/S1055-7903(14)00253-X/h0085
http://refhub.elsevier.com/S1055-7903(14)00253-X/h0090
http://refhub.elsevier.com/S1055-7903(14)00253-X/h0090

	The most parsimonious tree for random data
	1 Introduction
	1.1 Trees and parsimony: definitions and basic properties

	2 Comparing given trees
	2.1 Comparing two trees by their parsimony score

	3 Maximum parsimony trees
	4 Asymptotic analysis
	4.1 Simulations
	4.2 Concluding comments

	Acknowledgments
	Appendix A Supplementary material
	References


