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ABSTRACT

Many different programs have been developed for the prediction of the secondary structure
of an RNA sequence. Some of these programs generate an ensemble of structures, all of
which have free energy close to that of the optimal structure, making it important to be able
to quantify how similar these different structures are. To deal with this problem, we de� ne
a new class of metrics, the mountain metrics, on the set of RNA secondary structures of a
� xed length. We compare properties of these metrics with other well known metrics on RNA
secondary structures. We also study some global and local properties of these metrics.

Key words: RNA secondary structure, pseudoknot , suboptimal secondary structures, metric, dis-
tance, similarity.

1. INTRODUCTION

Achallenging problem in bioinformatics is the prediction of the tertiary (or three dimensional)
structure of an RNA molecule (and also, of course, that of a protein molecule) using only its primary

structure (i.e., its sequence of nucleotides) (see Zuker (1986) for a comprehensive review). Although
accurately predicting tertiary structure is currently very dif� cult, signi� cant progress has been made in
predicting the secondary structure of RNA molecules (that is, the structure that can be represented as a
planar graph) which should, in turn, lead to deep insights into their tertiary structure. There are ef� cient
algorithms for associating a secondary structure to an RNA primary structure which work by minimizing
free energy (see Zuker (1989b), Zuker et al. (1984) for example). However, due to dif� culties in measuring
bond energies precisely and also to uncertainties inherent in the models used for folding, searching for
a unique structure is an ill-conditioned problem (Zuker, 1986). Thus, it is important not to predict just
a single structure when folding a sequence but to predict an ensemble or collection of structures, all of
whose free energies are close to that of the folding with minimal free energy. These ensembles are usually
referred to as collections of suboptimal structures, and various algorithms have been designed for their
prediction (see McCaskill (1990), Zuker (1989a) for two of the most popular approaches).

In general, given a sequence of � xed length, an ensemble may contain thousands of distinct structures
(Uhlenbeck et al., 1995; Zuker (1989b, p.179)). This lack of close correspondence between primary and
secondary structure for RNA is expected to have been especially problematic during the origin of life before
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proteins evolved and helped stabilize secondary structures. It is necessary to be able to compare secondary
structures in an ensemble in order to � nd conditions of temperature and nucleotide composition that may
favor a closer relationship between sequence and structure. This problem is of particular importance to
biologists, and is related to the study of landscapes, on which much progress has been made recently (see
Fontana et al. (1993), Boenhoeffer et al. (1993) for example).

Here we deal with one aspect of this problem, that of de� ning similarity measures or, more speci� cally,
metrics on ensembles (see Dress et al. (1996) for an abstract study of similarity theory). In particular, after
reviewing two well known classes of secondary structure metrics, the base-pair and tree metrics, we de� ne
a new class, the mountain metrics, which have the advantage that they are easy to compute, and to use. We
then study some “global” and “local” properties of these metrics, where, by global we mean properties of
the metric over a diverse range of structures, while local refers to those properties of structures that are
similar to a selected structure.

In particular, we compute the diameter of certain mountain metrics, and then simulate their distributions,
a technique that has proven useful in the study of tree metrics (Steel et al., 1993). We compare these
distributions with those of the base-pair and tree metrics. Understanding the way in which the metrics
behave locally can be important: mfold (MFOLD) uses a base-pair metric in order to � lter out locally
similar structures from ensembles. Here we study a particular local property of the mountain metrics: we
give recursive formulas for computing the number of secondary structures that are within a certain � xed
mountain metric distance of a given � xed structure.

2. SECONDARY STRUCTURES

A secondary structure S for an RNA sequence of length n, is a simple graph, that is, a graph with
only one edge between each pair of vertices, with vertex set [n] :5 f1, . . . , ng, whose edge set consists
of the edges ffi, i 1 1g j 1 µ i µ n ¡ 1g, together with a further collection of edges BS , such that if
fi, jg, fk, lg 2 BS with i , j and k , l, then

(i) i 5 k if and only if j 5 l, and

(ii) k µ j implies that i , k , l , j .

An edge fi, j g contained in BS is called a base pair, and – in case i , j – we also denote it by i j .
Those vertices not contained in a base pair are called unpaired. Condition (i) implies that each vertex
(i.e., nucleotide) is allowed to belong to at most one base pair. Condition (ii) excludes the formation of
pseudoknots. See Figure 1 (a) for an example of a secondary structure (where base pairs are represented
by dotted lines).

Note that in this de� nition we do not allow base pairs of the form i i 1 1. In some cases one can also
de� ne secondary structures so that they do not have base pairs of the form i i 1 k for all k 2 f1, . . . , r g
for a � xed r, to make the model more realistic (Zuker, 1986). In Section 5 we consider such structures.

Let Sn denote the set of all possible secondary structures on an RNA sequence [n]. On re� ection, it is not
hard to see that the cardinality of Sn grows extremely rapidly with n (for calculations of this cardinality see
Stein et al. (1978)), thus making it important to � nd ways for comparing secondary structures ef� ciently.

There are many different ways to represent secondary structures (see Figure 1), however, three repre-
sentations interest us here:

Bracket Representation: This is a compact representation which is obtained for each element S 2 Sn ,
by creating a sequence of length n consisting of parentheses and dots, through replacing each base pair
i j 2 BS in the sequence [n] by a “(” and a “)” in the i th and j th positions, respectively, and replacing
those i 2 [n] which are unpaired by a “ ” (Hofacker et al., 1994, p.171) (see Figure 1 (c)).

Mountain Representation: The bracket notation leads naturally to the mountain representation for the
secondary structure, which has been used for the “graphical” comparison of secondary structures (Hogeweg
et al., 1984; Konings et al., 1989). Basically, each base pair is represented by a horizontal line over the
primary sequence at a height that is dictated by its position in the sequence (see Figure 1 (d)).

Tree Representation: There are also various ways of representing secondary structures as trees (Ho-
facker et al., 1994; Shapiro, 1988; Schmitt et al., 1994). These representations differ in that some compress
substructures into single labeled vertices. A tree representation which is directly related to the bracket no-
tation is illustrated in Figure 1(e). Here the secondary structure is represented by an ordered rooted tree:
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FIG. 1. Representations of RNA secondary structure.

The root does not correspond to a part of the RNA secondary structure, internal nodes correspond to base
pairs, and leaves correspond to unpaired vertices (as labeled) (see Fontana et al. (1993, p.1397) for a
detailed description).

3. SECONDARY STRUCTURE METRICS

In this section, we recall two well known classes of metrics de� ned on secondary structures, namely,
base-pair and tree metrics, which are based on the bracket and tree representations of secondary structures
respectively, and a new class of metrics called the mountain metrics, which are based on the mountain
representation of secondary structures.

3.1. Base pair metrics

One of the simplest metrics that one can de� ne on Sn is to set the distance between a pair S1, S2 2 Sn

equal to the cardinality of the symmetric difference of BS1 and BS2 . However, this metric is clearly very
coarse, in that it does not capture much of the secondary structure information.

A more re� ned metric de� ned using base pairs was introduced by Zuker (1989b, p.180). For S1, S2 2 Sn ,
de� ne the distance between two base pairs i j 2 BS1 and i 0 j 0 2 BS2 to be

d0(i j, i 0 j 0) :5 maxfji ¡ i 0j, j j ¡ j 0jg.

De� ne dZ (S1, S2) to be the smallest d 2 N0 such that for every base pair b1 2 BS1 there is a base pair in
BS2 within distance d0 at most d of b1, and (to ensure symmetry) for every base pair b2 2 BS2 there is a
base pair in BS1 within distance d0 at most d of b2. Note that dZ is de� ned on the set Sn ¡ fSn

o g for n ¶ 3,
where Sn

o denotes the secondary structure of length n with no base pairings. It can easily be seen that dZ is
a metric. For example, d0 induces a Hausdorff metric on the power set of B :5 fi j j 1 µ i , j µ ng, and
we can consider any secondary structure as a subset of the set B. The metric dZ was developed to � lter out
similar suboptimal structures generated by the original mfold program (Zuker, 1989b, 1989a; MFOLD).

Note that dZ operates by � nding the maximal distance between any two base pairs in any pair of
secondary structures. However, this can pose problems as we see in the following example: De� ne S1 :5

( ) (((( )))) and S2 :5 (((( )))) both of which are in S30.
Then dZ (S1, S2) 5 20, even though S1 and S2 only differ in one base pairing. Thus dZ can sometimes be
insensitive to local changes in structure.

Motivated by this problem, a variant of dZ was de� ned by Zuker et al. (1991, p. 2708), which is used
in the latest version of the program mfold (MFOLD): If S1, S2 2 Sn ¡ Sn

o , then S1 is said to be within
distance d of S2, if for every base pair b1 2 BS1 , with the possible exception of d base pairs, there is a
base pair b2 2 BS2 such that the distance between b1 and b2 is at most d . Symmetrizing this measure,
we de� ne dP (S1, S2) to be the maximum of the two possible distances between S1 and S2. In the above



280 MOULTON ET AL.

example, we see that dP (S1, S2) 5 1. However, the distance function dP is not a metric as it fails to satisfy
the triangle inequality. For example, if S1 5 (((( ((((( ))))) )))), S2 5 (((( )))) (( )),
and S3 5 ((( ))) then dP (S1, S2) 5 4, dP (S2, S3) 5 4, but dP (S1, S3) 5 9.

3.2. Mountain metrics

In this section we de� ne a new class of metrics which is based on the mountain representation of
secondary structures (see Section 2 and Hogeweg et al. (1984)). These metrics have the advantage that
they can be computed very quickly, and have properties which make them easy to handle theoretically.
For each S 2 Sn de� ne a vector f S in (N0)n , by setting its i th coordinate f S (i ) equal to the number of
“(” brackets minus the number of “)” brackets encountered when traversing the bracket notation from the
� rst position up to, and including, the i-th position so that f S 5 ( f S (1), f S (2), . . . , f S (n)). It is now easy
to check that the lp-norm induces a metric d p

M on Sn in the usual way, viz:

d p
M (S1, S2) :5 k f S1 ¡ f S2 kp :5 (§n

i 5 1j f S1 (i) ¡ f S2 (i)jp)
1
p ,

for all S1, S2 2 Sn .
Note that the metric d p

M weights base pairings differently: for example, when p 5 1 if S1 :5 ( )
and S2 :5 ( ) , then d1

M (S1, S8
o ) 5 7, and d1

M (S2, S8
o ) 5 3. Hence, it may be preferable to scale d1

M
as follows. If S 2 Sn and k 2 [n], then set

wS (k) :5

8
><

>:

1
(l ¡ k) if k l 2 BS

¡ 1
(k ¡ l) if l k 2 BS

0 otherwise,

f 0
S (i) :5 § i

k5 1wS (k), and dM (S1, S2) :5 k f 0
S1

¡ f 0
S2

k1. Note that if S 2 Sn has a single base pair in any
position then dM (S , Sn

o ) 5 1 (as with dT , where dT (S , Sn
o ) 5 2).

Note that it is straightforward to extend the de� nition of the mountain metrics to the set of pseudoknots
on n bases Pn , that is, graphs for which Condition (ii) in the above de� nition of secondary structure is
relaxed to the condition (ii)0 i j, k l 2 BS implies j 65 k (Dam et al., 1992). The algorithms used
in mfold and VIENNA to predict secondary structures depend heavily on the exclusion of pseudoknots
(Zuker, 1989b; Hofacker et al., 1994). The de� nition of tree metrics is dependent on the tree representation
of secondary structure, which cannot be used for pseudoknots. However, the metrics dZ , dP , and d p

M can
all be easily extended to Pn .

3.3. Tree metrics

In Section 2, we saw a way to represent secondary structures by trees. There are various metrics de� ned
on trees (see Steel et al. (1993) for example), however, in the setting of secondary structures the most
popular class of metrics is de� ned as follows. Any (labeled) tree T1 can be transformed into any other tree
T2 via a series of editing operations, that is, a sequence of deletions, insertions or relabelings of edges and
vertices. By assigning a cost to each of these operations, we de� ne a tree metric by setting the distance
between T1 and T2 equal to the smallest sum of the costs along all editing paths between T1 and T2 (note
that the distance between two secondary structures of different lengths can be de� ned using this measure
(Shapiro, 1988)—here we restrict to the case where the lengths are equal, although the ability to compare
structures of different lengths has proven useful in other applications (see, e.g., Collins et al., 1999)). One
of the great advantages of this approach is that by varying the tree representation and editing costs one has
the � exibility of tailoring metrics to either global or local analysis. For example, the tree representation of
secondary structure given in Figure 1(e) is very � ne, making it better for local analysis. However, as we
have seen, there are coarser tree representations of secondary structures (Hofacker et al., 1994; Shapiro,
1988), which (with appropriate editing costs) are better suited to global analysis.

Here we use the tree representation described in Section 2, which is one of the representations used in
the VIENNA RNA folding package (Hofacker et al., 1994; VIENNA) and assign the following editing
costs that are used by VIENNA: the deletion or insertion of an unpaired base, or the exchange of an
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unpaired base for a base pair has cost one, and the deletion or insertion of a base pair has cost two.1 We
denote the resulting metric on Sn by dT . Note that dT (S1, S2) ¶ 2, for any distinct S1, S2 2 Sn .

Various algorithms have been developed for the computation of tree metrics de� ned via editing costs
(see Shapiro (1988), Sankoff et al. (1983) for example), the most ef� cient being a dynamical programming
algorithm due to Shapiro and Zhang (Shapiro et al., 1990). This algorithm is currently used in the VIENNA
package (Hofacker et al., 1994). Tree editing can be regarded as a generalization of sequence alignment,2

which can also be used to de� ne metrics on Sn (see, e.g., Konings et al. (1989)): Representing elements
in Sn in bracket notation, that is, as strings in the symbols (, ) and , one can de� ne costs for insertions
and deletions and thereby obtain the alignment distance between any pair of elements of Sn in the usual
way, e.g., see Waterman (1995, Chapter 9). However, this has the disadvantage that in resulting alignments
base pairings will not necessarily be matched up correctly (for example two (’s may be aligned, one from
each string, however their corresponding )’s may not be).

A problem with tree metrics in the setting of suboptimal structures is that they require a complicated
algorithm for their computation which, as a consequence, makes them dif� cult to analyze formally, and
time consuming to compute for large numbers of structures (more on this last problem later).

4. A GLOBAL PROPERTY OF SECONDARY STRUCTURE METRICS

In this section we compute the diameter, a global property, of some of the metrics that we have de� ned
in this paper. For a metric d on a � nite set X denote its diameter by diam(X , d), that is, the maximum
value of d(x , y ) for all x , y 2 X . Let S 0

n denote the space of secondary structures where base pairs of the
form ( ) are allowed (so, in particular, we have Sn ³ S 0

n). Also, de� ne Sn
¤ to be the secondary structure

((, . . . , (( )), . . . , )) and ((, . . . , (( )), . . . , )) of length n, where n is even and odd respectively.

Theorem 4.1. The following equalities hold:

(i) diam(Sn ¡ fSn
o g, dZ ) 5 n ¡ 3, for n ¶ 6.

(ii) diam(S 0
n , dT ) 5 2(n ¡ 1), for n ¶ 3.

(iii)

diam(Sn , d p
M ) 5

(
(2

Pk ¡ 1
m 5 1 m p 1 (k ¡ 1)p )

1
p if n 5 2k

(2
Pk

m 5 1 m p)
1
p if n 5 2k 1 1,

for all k ¶ 1.
(iv) diam(Sn , d1

M ) 5 k ¡ 1, for n 5 2k, 2k 1 1, and all k ¶ 1.

Proof. (i) Consider the structures S1 :5 ( ) , . . . , and S2 :5 , . . . , ( ) in Sn ¡ fSn
o g. Then

dZ (S1, S2) is equal to n ¡ 3. Moreover, it is clearly not possible to place two base pairs in a pair of
secondary structures further apart than in this example.

(ii) As mentioned in the footnote in Section 3.3, the metric dT is de� ned on the set S 0
n . Note that

since any structure in S 0
n can be edited to give a structure in S 0

n ¡ 1 and visa versa, with edit cost 1, we
immediately see that

diam(S 0
n1 1, dT ) µ diam(S 0

n , dT ) 1 2,

from which it immediately follows (using a simple induction argument on n) that diam(S 0
n , dT ) µ 2(n ¡ 1).

We now claim that this upper bound is, in fact, sharp. Set n 5 2k 1 1, for k ¶ 1. We will show that
dT (Sn

¤ , Sn
o ) ¶ 4k, thus proving the claim for n odd. Note that on any edit path from Sn

¤ to Sn
o we must

1The VIENNA package allows base pairs of the form “( )” in the bracket notation, which we have excluded in our
de� nition of secondary structure.

2It was recently pointed out to us in a private communication from R. Giegerich that the tree edit distance is in
some sense the incorrect generalization of string edit distance to trees. More details will appear on this elsewhere.
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remove, at some stage, the k pairs of brackets from Sn
¤ . There are two possible ways in which to remove

these brackets:
(a) Remove a pair with cost 2, in which case we must add two unpaired bases at some other point in

the path with cost at least 2, so as to restore the structure to its original length.
(b) Exchange a pair of the form ( ) with an unpaired base, cost 1, in which case we must add a base

at some other point in the edit path which has cost at least 1. However, for this case to arise, we must, at
some stage, remove the middle base in Sn

¤ with cost at least 1, which, in turn, means that we must add in
a base with cost at least 1 at some point in the edit path.

In either case (a) or (b) the total cost of removing the base pair (and then restoring the structure to its
original length) is at least 4, so that dT (Sn(F ), Sn

o ) ¶ 4k 5 2(n ¡ 1) as required.
The case where n 5 2k for k ¶ 1, i.e., n is even, is similar except that we have a pair of brackets ( )

in the middle of Sn
¤ , which can be removed, and a base added at some stage in the edit path, with cost 2.

However, all other base pairs must be removed with cost at least 4 as for n odd, so that dT (Sn(F ), Sn
o ) ¶

4(k ¡ 1) 1 2 5 2(n ¡ 1).
(iii) First, note that for i 2 [n] and any S 2 Sn , we have f Sn

o
(i) µ f S (i) µ f Sn

¤ (i). Hence it follows
that d p

M (S1, S2) µ d p
M (Sn

o , Sn
¤ ), for all p 5 1, . . . , 1. Thus, (iii) follows from a routine calculation of

d p
M (Sn

o , Sn
¤ ).

Corollary 4.2. We have diam(Sn , dT ) 5 2(n ¡ 1) for n odd, and 2(n ¡ 2) µ diam(Sn , dT ) µ 2(n ¡ 1)
for n even, n ¶ 3.

Proof. The case where n is odd follows directly from part (ii) of the theorem. In the case where n is even
it can be seen, using similar arguments to those presented in the proof of (ii), that dT (Sn

¤ , Sn
o ) 5 2(n ¡ 2),

which completes the proof.

5. LOCAL PROPERTIES OF THE MOUNTAIN METRICS

In this section we give recursive formulae for computing the number of secondary structures that are
exactly some � xed mountain metric distance from some � xed structure. This gives us local information
on the mountain metrics.

Given a secondary structure S 2 Sn , we can associate to it the sequence x0, x1, . . . , xn , de� ned by
x0 :5 0, and x i :5 f S (i) for each 1 µ i µ n, arising from the mountain representation of S (see
Section 2). In this way it is straight forward to see that secondary structures correspond to sequences
x0, x1, x2, . . . , xn which satisify:

(1a) xi 2 f0, 1, 2, . . .g for all i ¶ 0;

(1b) x0 5 xn 5 0;

(2) if x i . x i 1 1, then x i ¡ 1 ¶ x i ;

(3) jxi ¡ x i ¡ 1j µ 1 for all i . 0.

Note that Condition (2) is equivalent to the requirement that adjacent positions are not paired, and the
additional value x0 5 0 excludes certain forbidden con� gurations. In addition, note that the Conditions
(1 a,b) and (3) imply that x i µ minfi, n ¡ ig for all i ¶ 0.

Let x 0
0, x 0

1, . . . , x 0
n represent a � xed secondary structure S 0 of length n, and let N p

n (s) denote the number

of secondary structures S of length n with d p
M (S 0, S ) 5 s

1
p , for s 2 f0, 1, 2, . . .g. We now describe

recursions for computing N p
n (s), for p 2 f1, 2, . . . , 1g.

5.1. Recursions for computing N p
n (s), p , 1

For t 2 f0, 1 1, ¡ 1g, let N t
k (s, l) denote the number of sequences x0, x1, . . . , xk , which satisfy (1 a),

(2), and (3), and for which
kX

i 5 1

jx i ¡ x 0
i j

p 5 s,
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and in addition,

x0 5 0, xk 5 l, xk ¡ 1 5 l ¡ t ,

(which replaces Condition (1b)). Thus, for l . 0, the number N t
k (s, l) can be thought of those “partial”

secondary structures S whose d p
M distance to S 0 restricted to the � rst k bases is s

1
p and which satisfy

f S (k) 5 l and f S (k ¡ 1) 5 l ¡ t (see Figure 2).
Now, de� ne

N k (s, l) :5 N ¡ 1
k (s, l) 1 N 0

k (s, l) 1 N 1 1
k (s, l),

and

N µ0
k (s, l) :5 N ¡ 1

k (s, l) 1 N 0
k (s, l).

Then we clearly have

N p
n (s) 5 Nn(s, 0). (1)

We now describe a simultaneous one-step recursion for the pair (N 1 1
n , N µ0

k ) which allows us to calculate
N p

n (s) via Equation (1), in polynomial time. For k . 1 we have the recursion:

N 1 1
k (s, l) 5 Nk ¡ 1(s ¡ jx 0

k ¡ ljp , l ¡ 1) (2)

N µ0
k (s, l) 5 Nk ¡ 1(s ¡ jx 0

k ¡ ljp , l) 1 N µ0
k ¡ 1(s ¡ jx 0

k ¡ ljp , l 1 1) (3)

subject to the boundary conditions,

N 1 1
k (s, l) 5 N µ0

k (s, l) 5 0, if s , 0, or l 62 [0, k],

and the initial conditions

N 1 1
1 (s, l) 5

»
1 if (x 0

1, s, l) 2 f(1, 0, 1), (0, 1, 1)g,
0 else,

and

N µ0
1 (s, l) 5

»
1 if (x 0

1, s, l) 2 f(0, 0, 0), (1, 1, 0)g,
0 else.

A few words of explanation are in order for these recursions. Note that Equation (2) says that the number
N 1 1

k (s, l) of partial secondary structures S with f S (k) 5 l and f S (k ¡ 1) 5 l ¡ 1 whose d p
M distance to S 0

restricted to the � rst k bases, is simply the number of incomplete secondary structures with d p
M distance

s ¡ jx 0
k ¡ ljp to S 0 restricted to the � rst k ¡ 1 bases. In contrast, Equation (3) has two terms on the right

hand side, so as to avoid problems with Condition (2), which forces us to exclude the possibility of the last
three terms in the sequence x0, x1, . . . xk representing the partial secondary structure S being l, l 1 1, l. The

S’
S

l

k n0  2

FIG. 2. One of the “partial” secondary structures S that is counted when obtaining N 1
k (s, l), together with the � xed

secondary structure S 0.
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initial conditions are justi� ed as follows: N 1 1
1 (s, l) is the number of sequences x0 5 0, x1 5 1 satisfying

Conditions (1a), (2) and (3), with l1-distance s
1
p from the sequence x 0

0 5 0, x 0
1, where x 0

1 2 f0, 1g. Hence,
we see immediately see that N 1 1

1 (s, l) is either zero or one, and that for it to be nonzero we must have
s 2 f0, 1g. This leaves only two possibilities; either x 0

1 5 0, in which case s 5 1, or x 0
1 5 1, in which case

s 5 0. The reasoning for the second initial condition is similar.
Now, to calculate Nn (s, 0) we simply compute the matrices:

M 1 1
k 5 [N 1 1

k (s 0, l) : 0 µ s 0 µ s, 0 µ l µ minfk, n ¡ kg]

and

M µ0
k 5 [N µ0

k (s 0, l) : 0 µ s 0 µ s, 0 µ l µ minfk, n ¡ kg]

by starting with M 1 1
1 , M µ0

1 and applying the above recursions to derive (M 1 1
k , M µ0

k ) from (M 1 1
k ¡ 1, M µ0

k ¡ 1).

Note that M 1 1
k , M µ0

k are both O (s £minfk, n ¡ kg) matrices, and so we need to recursively construct only

nX

k 5 1

s £ minfk, n ¡ kg 5 O (sn2)

entries in order to compute N p
n (s).

5.2. Recursions for computing N 1
n (s)

We now describe an analogous recursion to that given in the previous section for the case where p 5 1.
For t 2 f0, 1 1, ¡ 1g, let T t

k (s, l) :5
Ps

s0 5 0 N t
k (s0, l), and Tk (s, l) :5 T ¡ 1

k (s, l) 1 T 0
k (s, l) 1 T 1 1

k (s, l). Then
we have the recursions:

T 1 1
k (s, l) 5

»
Tk ¡ 1(s, l ¡ 1) if jx 0

k ¡ lj µ s,
0 else,

and

T µ0
k (s, l) 5

»
Tk ¡ 1(s, l) 1 T µ0

k ¡ 1(s, l 1 1) if jx 0
k ¡ lj µ s,

0 else,

subject to the boundary conditions, T 1 1
k (s, l) 5 T µ0

k (s, l) 5 0, if s , 0, or l 62 [0, k] and the initial
conditions

T 1 1
1 (s, l) 5

»
1 if (x 0

1, l) 5 (1, 1), s ¶ 0; or (x 0
1, l) 5 (0, 1), s ¶ 1,

0 else,

and

T µ0
1 (s, l) 5

»
1 if (x 0

1, l) 5 (0, 0), s ¶ 0; or (x 0
1, l) 5 (1, 0), s ¶ 1,

0 else.

In this case, s is constant in the recursions so we need only calculate the O (n2) entries in the vectors

t 1 1
k :5 [T 1 1

k (s, l) : l 5 0, 1, . . . , minfk, n ¡ kg]

and

tµ0
k :5 [T µ0

k (s, l) : l 5 0, 1, . . . , minfk, n ¡ kg]

to compute Tn (s, 0) which is the number of secondary structures at distance at most s from the input
sequence, under the mountain metric with p 5 1. In case we explicitly require N 1

n (s) we can use the
identity: N 1

n (s) 5 Tn (s, 0) ¡ Tn (s ¡ 1, 0).
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5.3. Recursions for restricted structures

If we require that loops within the secondary structures at a � xed distance from a � xed structure should
contain at least r ¶ 2 bases within them (see Section 2), then the previous analysis can be modi� ed as
follows. First, we replace (2) by a natural extension which ensures that the requirement is satis� ed:

(2)¤ if x i . x i 1 1, then x i ¡ 1, . . . , x i ¡ r ¶ xi .

Note that (2)¤ reduces to (2) when r 5 1.
Now, for the case p , 1 we replace the above two simultaneous recursions by the two simultaneous

recursions: for k . 1,

N 1 1
k (s, l) 5 Nk ¡ 1(s ¡ jx 0

k ¡ ljp , l ¡ 1),

N µ0
k (s, l) 5 Nk ¡ 1(s ¡ jx 0

k ¡ ljp , l) 1 N µ0
k ¡ 1(s ¡ jx 0

k ¡ ljp , l 1 1) ¡
rX

j 5 2

N 1 1
k ¡ j (s( j ) , l 1 1),

where s( j ) 5 s ¡ jx 0
k ¡ ljp ¡

P j ¡ 1
t 5 1 jx 0

k ¡ t ¡ (l 1 1)jp , and the boundary conditions and initial conditions are
as described earlier for the r 5 1, p , 1 case, together with the condition Nk (s, l) 5 0 if k µ 0, l ¶ 1.

For the case p 5 1 we have the recursions:

T 1 1
k (s, l) 5

»
Tk ¡ 1(s, l ¡ 1) if jx 0

k ¡ lj µ s,
0 else,

and

T µ0
k (s, l) 5 Tk ¡ 1(s, l) 1 T µ0

k ¡ 1(s, l 1 1) ¡
rX

j 5 2

T 1 1
k ¡ j (s, l 1 1)V ( j, k, s, l 1 1),

where

V ( j, k, s, l 1 1) 5

»
1 if jx 0

t ¡ (l 1 1)j µ s, for all t : k ¡ j , t , k, and jx 0
k ¡ lj µ s,

0 else,

and where T µ0
k , T 1 1

k are subject to the same boundary and initial conditions as were described for the
r 5 1, p 5 1 case, together with the condition Tk(s, l) 5 0, if k µ 0, l ¶ 1.

6. COMPUTATIONAL RESULTS

To investigate more fully properties of the secondary structure metrics that we have de� ned, we imple-
mented routines for computing dZ , dP , d p

M (p 5 1, 2, . . . , 1), and dM . We used the routine provided in
the VIENNA package (VIENNA) for computing dT . We also implemented the recursion formulae that are
given in Section 5. Secondary structures were generated using the VIENNA and mfold packages.

All programs were written in GNU C, and then run under Solaris 2.5 on a Sun SPARC Server 1000
with 4x 40Mhz CPU’s, and 512Mb RAM. An example experiment was run with 200 structures of various
length, in which every structure was compared to all others, giving 19900 metric calculations. For the
mountain metrics the overall running time was relatively quick, and it was only the longer sequences (of
length greater than about 600) which needed to be left for at most a few hours. The calculations for the
tree metric (from the VIENNA package) required considerably more time and we were forced to abandon
some experiments after the program had run for a week.
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6.1. Distributions

In order to compare distributions of metrics we � rst generated a set of random sequences of a � xed
length over the alphabet fA , U, C, Gg, and then folded these sequences using the RNAfold routine from
the VIENNA package, which associates a secondary structure of minimal energy to an RNA sequence. We
then computed the distance between each pair of these structures using the various metrics. In Figure 3,
a representative of the results that we obtained, we present the distributions of dT , dZ , dP , d1

M , d1
M and

dM , which were obtained by generating 200 random sequences of length 100. We normalized each of the
distances by the diameter (except the dM distance which we normalized by dM (S100

¤ , S100
o )).

In general, we found that the pairs of metrics dT and dM , dZ and d1
M , and dZ and d1

M , had similarly
shaped distributions. The metrics dT and dM had a similar spread of values, which in part leads us to
believe that dM will provide an attractive alternative to dT . Note that the values of dP in Figure 3 are
generally lower than dZ and less spread out. This is in accordance with the fact that dP was designed
to ignore outlying base pairs (see Section 3.1). It is surprising to us that dT gives so few low values
as compared with dP and d1

M . Moreover, to date we have not been able to � nd an explanation for the
‘oscillation’ of the distribution for d1

M between the values of 20 and 40 in Figure 3.
In general, we advocate the production of distributions such as those in Figure 3 when making an analysis

as they indicate the possible range of values for the metrics in practice; thus, for example, if a value of 65
were obtained between two structures of length 100 then Figure 3 would indicate that these structures are,
relatively speaking, far apart. Such techniques have already been used in studying tree comparison metrics
(Steel et al., 1993). More work needs to be done in this direction, for example, improving the method that
we use to generate random structures.

We also measured the distances between each pair of structures in ensembles of suboptimal structures
generated by mfold that, using window value 0 to ensure that the program did not pre� lter the struc-
tures, was set to produce suboptimal structures that had free energy within ten percent of the optimal
structure.

In Figure 4 we present the results obtained for part of the mRNA from Schistosoma mansoni. This
sequence was obtained from the paRNAss server (paRNAss), and is an example of a RNA molecule that
may fold into two distinct conformational structures (Giegerich et al., 1994). In Figure 4 it can be seen
that each metric indeed picks up two distinct classes of structures, as is indicated by the bimodal behavior
of the distributions. However, it is also clear that the d1

M metric is not very sensitive at either long or short
range (i.e., for structures that are either quite different or similar, respectively). Also the dZ metric picks
up a signi� cant number of structures that are distance 25–30 apart; a result that needs to be investigated
further. The dT and dM distributions are very similar and both metrics appear sensitive at long and short
range.

6.2. Recursions

To investigate the recursions given in Section 5, we considered various naturally occurring sequences
with the property that mfold either folded them in a well-de� ned way (i.e., with very few suboptimal
structures that were all “similar” to the optimal structure), or in a poorly-de� ned way (i.e., produced many
varied suboptimal structures). In particular, we took the optimal secondary structure generated by mfold
and then computed the number of secondary structures within a given d1

M distance s of this structure for
various values of the parameter r (see Section 5.3). We made the same computations for d1

M , but the
results were similar, so we do not include them here.

In general, we found that, independent of whether the secondary structure was well-de� ned or poorly-
de� ned, the number of secondary structures grew very rapidly with increasing s. For example, in Table 1
we present the results obtained for two RNA sequences that fold in a well-de� ned and a poorly-de� ned way
(the length of these sequences were 167 and 359 respectively, and the number of suboptimal structures
within 10% of optimal generated by mfold—using window value 0—for each sequence were 10 and
253, respectively). Moreover, in general, although for increasingly large values of r there were virtually
no secondary structures close-by for small values of s, once s became suf� ciently large the number of
structures again grew very rapidly with increasing s (see Table 1).

We conclude that the space of secondary structures equipped with the mountain metric d1
M is in some

sense homogeneous (i.e., that the number of secondary structures within a certain mountain metric distance
of a certain � xed structure does not heavily depend upon the � xed structure in question). Thus it is
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FIG. 3. Distributions of metrics; distances (as percentage of diameter, x-axis) between randomly generated structures
vs. frequency (y-axis). dT 5 dT , dZ 5 dZ , dP 5 dP , dM(max) 5 d1

M , dM(L1) 5 d1
M , and dM 5 dM
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FIG. 4. Distances (as a percentage of diameter, x-axis) between an ensemble of structures generated by M-fold for
a � xed RNA sequence vs. frequency (y-axis). dT 5 dT , dZ 5 dZ , dP 5 dP , dM(max) 5 d1

M , dM(L1) 5 d1
M , and

dM 5 dM
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Table 1. Number of Foldings within Mountain Distance s of the Optimal Folding
for a Well-De� ned (Top) and Poorly-De� ned Folding (Bottom) RNA Sequence,

for Various Values of r

r

s 1 2 3 4 5

0 1 1 1 1 0
1 45 36 35 28 0
2 1049 685 641 420 0
3 16832 9125 8155 4453 0
4 208575 95241 80793 37261 0
5 2124297 827339 662919 261002 0
6 18488985 6209557 4681071 1587289 0
7 141221612 41300677 29198277 8590438 0
8 965031133 247905020 163936311 42116013 0
9 5986290657 1361416696 840362529 189572280 0
10 34095324485 6913463019 3976863553 791666722 0
11 1,79937E 1 11 3274066757 7 17528593300 309311268 0 0
12 8,86519E 1 11 1,45605E 1 11 72482776384 1138482665 8 0
13 4,10311E 1 12 6,11585E 1 11 2,82895E 1 11 3970409750 5 0
14 1,79347E 1 13 2,43804E 1 12 1,04746E 1 12 1,3184E1 11 0
15 7,43717E 1 13 9,2624E1 12 3,69543E 1 12 4,18588E 1 11 3
16 2,93741E 1 14 3,3656E1 13 1,24696E 1 13 1,2754E1 12 92
17 1,10883E 1 15 1,17332E 1 14 4,03773E 1 13 3,74132E 1 12 1496
18 4,01272E 1 15 3,9353E1 14 1,2583E1 14 1,05964E 1 13 17066
19 1,39593E 1 16 1,27294E 1 15 3,78366E 1 14 2,90506E 1 13 152762
20 4,67948E 1 16 3,97976E 1 15 1,10035E 1 15 7,72689E 1 13 1139354

0 1 1 1 1 0
1 118 104 99 93 0
2 7027 5477 4972 4404 0
3 281481 194666 168799 141455 0
4 8529676 5251255 4355859 3464060 0
5 208507618 114640101 91088552 68937488 3
6 4281832947 2109090704 1607235925 1160564768 276
7 75959761157 3362317496 8 24602713397 1699035080 6 12946
8 1,18806E 1 12 4,74018E 1 11 3,33403E 1 11 2,20686E 1 11 412342
9 1,66398E 1 13 6,00184E 1 12 4,06194E 1 12 2,58232E 1 12 10023247
10 2,1126E1 14 6,90859E 1 13 4,50331E 1 13 2,75491E 1 13 198174775
11 2,45548E 1 15 7,30077E 1 14 4,5878E1 14 2,70552E 1 14 3317255802
12 2,63413E 1 16 7,14045E 1 15 4,32949E 1 15 2,46533E 1 15 4832164733 9
13 2,6259E1 17 6,50715E 1 16 3,81016E 1 16 2,09823E 1 16 6,24924E1 11
14 2,44665E 1 18 5,55714E 1 17 3,14483E 1 17 1,67733E 1 17 7,2851E1 12
15 2,14133E 1 19 4,46934E 1 18 2,44637E 1 18 1,26547E 1 18 7,74716E1 13
16 1,76804E 1 20 3,39952E 1 19 1,80118E 1 19 9,04827E 1 18 7,58774E1 14
17 1,38244E 1 21 2,45469E 1 20 1,25985E 1 20 6,15371E 1 19 6,89865E1 15
18 1,02707E 1 22 1,68814E 1 21 8,39891E 1 20 3,99355E 1 20 5,86075E1 16
19 7,27199E 1 22 1,10899E 1 22 5,35222E 1 21 2,4801E1 21 4,6784E1 17
20 4,92002E 1 23 6,97727E 1 22 3,26875E 1 22 1,47764E 1 22 3,5259E1 18

unlikely that we can distinguish between secondary structures that are either well- or poorly-de� ned using
the number of structures that are within a certain d1

M distance. In this respect, it would be interesting to
develop recursions which would include primary structure information (see Hofacker et al. (1998) for more
on this possibility): for example to � lter out those secondary structures that are close to a given secondary
structure that could not have the required primary structure.
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7. DISCUSSION

There are now a range of metrics available for comparing folded RNA structures. For most of these
metrics some properties, such as the maximum diameter, are known and the number of structures close to
one that is speci� ed is known for certain mountain metrics. In addition there are some empirical results
for both global and local properties. We do not advocate the use of any particular metric because the
choice will depend on the application (and generally speaking, it is probably safest to try as many metrics
as possible). For example, the metric dT has some useful properties when comparing smaller numbers of
trees, but the computational time would be considered excessive for data sets with thousands of structures
based on long sequences, and the metric dZ is used in mfold to � lter out similar structures, in part due to
the fact that this metric is straight-forward to implement.

In general it has been observed that dT and dM behave similarly (for example, see Figures 3 and 4).
Thus, dM should provide a useful alternative to dT for analyzing ensembles of structures. We would not
recommend the use of d1

M for such a task (see, e.g., Figure 4). An analysis of ensembles is required when
studying the energy landscape of structures for a given RNA molecule. For example, we are currently
developing tools for landscapes which should shed light on possible RNA properties before the evolution
of protein synthesis, and hence on the origin of life (Moulton et al., 1999).

Another application of ensemble analysis is the detection of conformal switches between secondary
structures (Giegerich et al., 1994). In Figure 5 we present what is known as a morphological plot for the
RNA sequence that we used to generate Figure 4 (see Section 6.1). This was generated by plotting the
values of the mountain metrics dM and d1

M against one another for all pairs of structures in a collection of
50 suboptimal structures generated by mfold. The plot in Figure 5 compares favourably with the example
plots given on the server (paRNAss), which were generated using computationally more expensive metrics
(Giegerich et al., 1994). It clearly displays two clusters, which correspond to the possibility for the RNA
in question to switch between two stable structural variants. We generated similar results using the tree-
metric, however, these took longer to compute (a problem shared by the energy barrier metric used by
paRNAss) (Giegerich et al., 1994).

FIG. 5. Morphological plot using mountain metrics.
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There is still much work to be done on the problem of understanding the landscape of structures of
a given RNA molecule. The availability of good metrics for comparing RNA structures is allowing the
quantitative study of this problem.
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