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Abstract

We investigate the combinatorics of a topological space that is generated by the set of edge-
weighted finite trees. This space arises by multiplying the weights of edges on paths in trees and
is closely connected to tree reconstruction problems involving finite state Markov processes. We
show that this space is a contractible finite CW-complex whose face poset can be described via a
partial order on semilabelled forests. We then describe some combinatorial properties of this poset,
showing that, for example, it is pure, thin and contractible.
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1. Introduction

Posets of trees and forests and assediapaces have been used as a tool in the
representation theory of the symmetric group [7,11]. However, recently such objects have
also appeared in areas of classification such as evolutionary biology [1]. In this paper we
introduce a poset on forests of semi-labelled trees that arises naturally from the set of edge-
weighted trees. This space is closely cected to the reconstructability of trees under
Markov random processes and has been calledettenstruction quotierih [12] and also
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been described by Junhyong Kim [6] as a space of “hyperdimensional oranges.” We now
define this topological space.

For a treeT, we let V(T) and E(T) denote the sets of vertices and edgesrof
respectively. For a fixed finite sef we let 7 (X) denote the (finite) set of tree® that
haveX as their set of leaves (degree one vertices). Given aymag7) — [0, 1] define

X
P=DPTn: (2> —[0,1]
by setting, for allx, y € X,

p.y =[] e,

ecP(T;x,y)

whereP (T; x, y) is the set of edges in the pathThfrom x to y.
Let (X, T) [0, 11(2) denote the image of the map

X
Ar:10,11FD 510,117, A piray.

and let&(X) be the union of the subspacégX, T) of [0, 1]2) over all T € 7(X). We
call £(X) theedge-product space for trees ah

Apart from their intrinsic ingérest, a central motivatiorof investigating these spaces
is that they are intimately annected with tree-indexed Markov process in molecular
evolutionary biology [5,9], as we now briefly outline. In these models there is a fixed matrix
Q of transition rates between states of some set (e.g., nucleotide bases, amino acids), which
forms a stationary and time-reversible Markov process. The process operates for some
durationd(e) on each edge of T. Let »: E(T) — [0, 1] be defined by (e) = ¢4,
and allowA(e) to equal O in order to model ‘site saturation’ (i.e., the limiting value as
d(e) — 00). The Markov process, parameterized by the p&iri), induces a (marginal)
joint probability distribution on the set of state assignmentX td-urthermore it can be
shown that two pairgT, ) and (7’,1") induce the same joint probability distribution
precisely if pir ) = prv.5y (by extending the approach of [12] which established this
result whenQ is a symmetric Z 2 matrix). Consequently, the edge-product space defined
above is homeomorphic to the quotient space where trees\witiued edge weights are
identified if they induce the same Markov process at the leaves for a fixed rate atrix
We will study this connection further in a subsequent paper.

So far little has been formally estéhed about the topology or geometry&(X) (or
£(X, T)) despite considerable interest in the properties of a related space where one adds
rather than multiplies positive real numbers along paths in trees. This related ‘additive’
space has some attractive combinatorial properties (see for example, [1,11]) and its metric
properties are of interest in applications [1]. However it is the ‘multiplicative’ space that
we study here which is the appropriate context for studying Markov process.

In this paper we will show thaf(X) has a naturaCW-complex structure for any finite
setX, give a combinatorial description of the associated face poset, and use this description
to determine some properties of this poset. We begin in Section 2 by providing some
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background terminology and results concernirees and tree metrics. In Section 3 we
describe aCW-complex structure o' (X) and show how it (and its face poset) can be
naturally parameterized by a posetXfforests,S(X). In Section 4, we determine some
structural properties af(X), in particular showing that it is pure and thin. In Section 5
we show that (X) and the geometric realization 8 X) are both contractible. Finally in
Section 6 we describe explicitly the fiber of the map over any pointir€ (X, T)) showing
that it is a contractible regular cell complexhose dimension can be readily computed.

2. Preliminarieson X-treesand tree metrics

In this section we present some material on trees that is important for the formulation
of the results that follow later in the paper. Throughout this papeiill be a finite set.

An X-tree 7 is a pair(T; ¢) whereT is a tree, andp: X — V(T) is a map such
that all vertices inV — ¢(X) have degree greater than two. We call the vertices in
V — ¢(X) unlabelled Two X-trees(T1; ¢1) and(T2; ¢2) are isomorphic if there is a graph
isomorphismx : V(T1) — V(T2) such thatp, = o o ¢1. For anX-tree7 = (T'; ¢) we let
E(7) denoteE(T), the set of edges ¢f .

A collection of bipartitions osplitsof X is called asplit systenon X. We will write
A|B to denote the splitA, B}. Given a split systenX’ on X and a subset of X, let

Z|Y={BNY|CNY: BICeX, BNY £, CNY #£0),

called theestrictionof X to Y. If o = B|C € X', andBNY|CNY iscontained in¥|Y then
we will denoteBNY|C NY byal|Y. A split systemX is said to bepairwise compatible
if, for any two splitsA|B andC|D in X', we have

We{ANC, AND, BNC, BND}.

Given anX-tree,7 = (T; ¢), and an edge of T, deletee from T and denote the
vertices of the two connected components of the resulting grapi Bpd V. If we let
A=¢"1(U)andB = ¢~1(V) then it is easily checked that|B is a split of X, and that
different edges of” induce different splits of(. We say that the split| B corresponds
to edgee (and visa versa). LeE (7) denote the set of all splits of that are induced
by this process of deleting one edge fr@m The following fundamental result is due to
Buneman [2].

Proposition 2.1. Let X be a split system oX. Then, there exists aki-tree 7 such that
Y =X (7) ifand only if X' is pairwise compatible. Furthermore, in this cagéjs unique
up to isomorphism.

Thus we may regard pairwise compatible split systems and (isomorphism classes of)
X-trees as essentially equivalent. This allows us to make the following definitions that will
be useful later.
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e Given anX-tree,7 and a non-empty subs&tof X let 7|Y be theY-tree for which
S(T|Y)=X(T)|Y.

e For an X-tree 7 and aY-tree 7/, whereY C X, we say that7 displays7” if
(TS Z(TY) (=Z@D)]Y).

A further concept that will be useful to us is the notion of a tree metric, which we now
describe. Suppose th@it= (T; ¢) is anX-tree, andw: E(T) — R>0. Letd (1 ) : (}2() —
R>0 be defined by

drw@x. = >  wl).
ecP(T;p(x),0(y))

Any function d:(’z‘) — R>9 that can be written in this way is said to betee
metric (with representation(7, w)). Recall that atopological embeddings a map
between two topological spaces that is onet@ and bicontinuous (i.e., a map that is

a homeomorphism onto its image). Part (i) of the following lemma is a classic result—see
for example Buneman [2]. For part (ii) the map described is injective by part (i), and it is
bicontinuous by Theorem 2.1 of [8].

Lemma 2.2.

(i) If d andd’ are tree metrics oiX with representationéZ , w) and(7”, w’) respectively,
thend = d’ if and only if 7 is isomorphic ta7’ andw = w’.

(i) For eachX-tree 7 the map from(R>%)E(D) to R(2) defined byw > d(7.,, is a
topological embedding.

3. A cellular structurefor the edge-product space

In this section we show that(X) has a natural description as a CW-complex based on
forests of trees that are vertex-labelled in a particular way. We begin with a definition.
An X-forestis a collectionf = {(A, T4): A € &} where

(i) 7 forms a partition ofX, and
(iiy 74 isanA-tree for eachd e .

Figure 1 illustrates an example of a&Rforest.

We let S(X) denote the set ok-forests. A routine check (see also [12]) shows that
S(X) is of size 3 and 15 whejX | = 2 and| X | = 3 respectively.

We now describe an order relationship on the setXeforests which we show
below gives a poset that is isomorphic to the face poset(af). Informally this order
relation translates as follows#< g if the trees inf can be obtained from the trees
in g by collapsing certain edges, and deleting certain other edges, with any resulting
unlabelled vertices of degree 2 being suppressed. We now make this more formal using
the terminology introduced in Section 2.
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1

Fig. 1. AnX-forestforX ={1,2, ..., 8}, with associated partition = {{1, 2, 3, 4}, {5, 6, 7}, {8}}.

Let f ={(A,7T4): Aen}andf ={(B,Ty): B en'} be two X-forests. We write
f’ < f precisely if the following two conditions hold.

(O1) The partitionz’ is a refinement of the partitiam.
(02) If A=|Jp, B forsomeA e 7 andJ C ' then
(i) forall B € J, 74 displays7, and
(iiy forall B, C € J with B # C there exist¥|G € X (74) with BC F andC C G.

The proof of the following lemma is routine.
Lemma 3.1. < is a partial order onS(X).

The posetS(X) was first defined (slightly differently) by Christopher Tuffley [12], and
accordingly we call it th@uffley posebn X. In Fig. 2 we pictureS(X) for X = {1, 2, 3}.
We now clarify its relationship t& (X).

To an X-tree 7, we associate the closed ba#(7) = [0, 115D and open ball
Int(B(T)) = (0, 1)E@) . More generally, for anX-forest f = {(A, Ta): A € 7}, we let
B(f) = [[aer B(7a) and let INtB(F)) = [[4c, INt(B(74)). Note thatB(f) (respec-
tively Int(B(f))) is homeomorphic to a closed (respectively open) ball of dimension
> 4ex |E(Ty)| and accordingly we will refer to this quantity as tHenension off, de-
noted din{f).

Given anX-treeT = (T; ¢) and maph: E(T) — [0, 1] definep(z 1) : (3) — [0, 1] by
setting

prnxn= [  Me.
eeP(Ti¢().6 ()

We can extend the correspondernice> p(7 ) to X-forests as follows. Given ai-

forest f = {(A,Ta): A € 7} let y;:B(f) — [0,1](2) be defined by setting, fox =
(Aa: Aem),

_ | p@ian@y), if3Aem withx,y e A,
), y) = {o, otherwise

Lemma 3.2. For eachX-forest f = {(A,74): Aen}eS(X)and maph = (Ay: A em)
e B(f), we havefr (1) € £(X).
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Fig. 2. The Tuffley poses(X) for X = {1, 2, 3}.

Proof. Write 7y = (Ta; ¢4). Let T, be the tree obtained frorfiy by performmg the
following operation mdependently on each vertexwlis a leaf, and¢A (v) has size
k> 2 or if v is an interior vertex andsA (v) has sizek > 1 then make the elements
ingy L(v) leaves by attaching each of them by a new edge (tohich is then regarded as
an unlabelled vertex). In this way we obtain a t®gthat has leaf sef, and for which
each edge of'4 has a corresponding edge®f. Let 14 be the edge weighting df; that
assigns the valuky (e) to any edge: of 7, that corresponds to an edge®f; otherwise
ra(e) = 1. Finally, letT be any tree obtained by joining together the collection of trees
{T,: A en} by adding edges arbitrarily that have as their endpoints interior vertices in
distinct trees from this set. Note that has leaf setX. Let A be the edge-weighting of

T that agrees withk4 for any edge inT, and that takes the value O for any edge that
has its endpoint vertices in distinct trees fr@if};: A € z}. It is now easily seen that
Yr(A)(x,y)=pa.nx,y) forallx,ye X and soy s (1) € £(X), as claimed. O

We now recall the definition of a finite CW-complex [3]. Suppose we have a Hausdorff
topological spac& and a collectionB,, of closed balls of various dimensions, together
with associated mapk, : B, — Y wherex ranges over a set. The sete, = ¥ (INt(By))
andc, = ¥4 (By) are called thepen cellsandclosed cellgespectively, corresponding to
a. In this setting, points may be regarded as 0-dimensional open cells.

ThenY is afinite CW-complexand the collectiof(B,, ¥y ): @ € A} is said to provide
acell decompositionf Y if A is finite, and the following three properties hold:

(cwl) Yo lintcs,) maps IntB,) homeomorphically ontoy,.
(cw?2) Y is the disjoint union of all open cells.
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(cw3) ¢ — 04 is a union of open cells of lower dimension.
Theface posebf Y is the collection of closed cells, partially ordered by inclusion.

Theorem 3.3. £(X) is a finite CW-complex, with cell decomposititB(f), ) f €
S(X)}. Furthermore, the Tuffley posef(X), <) is isomorphic to the face poset &{X)
under the map that send5to v (B(f)).

Proof. First we note that the number of-forests is clearly finite. It thus suffices to
establish the properties (cw1), (cw2) and (cw3).

To establish (cwl), suppose th#t= {(A,74): A en} e S(X). Forx,y € A, and
Xa € Int(B(Ty)), we havep(r, 5 ,)(x,y) € (0, 1).

By Lemma 2.2(ii) the mapping

A
Dy (R>0)E(TA) - R(Z), WA = d(TA,wA),

is a topological embedding.
Observe next that the mapxp—) : (R=%)(2) — (0, 1)(2) defined by

(tx,y) = exq_tx,y):
and the mag— log) : (0, )£ — (R>9E(T) defined by

(te) = —log(te),

are both homeomorphisms.
Now, if p4 denotes the restriction ¢f to (g) for A e 7 then

palx,y) = e—d(TA,—Iog(AA))(X,)‘)

for all x, y € A. Consequently, the mapy — p(7, 1,) IS just the compositioexp—) o
D4 o (—log), which by the proceeding discussiorais embedding. It follows that the map
¥ ¢ is bicontinuous and one-to-one on(Bt /)) which establishes (cw1l).

For (cw2), givenp € £(X), define an associated equivalence relation on X as
follows: Write x ~, y precisely if p(x, y) # 0. Let =, denote the equivalence classes

of ~,. Thus, forx, y € A € 7, we may definé 4 : (§) — R0 by

8a(x,y)=—log(p(x,y)). 1)

Notice thats 4 is a tree metric, and so, by Lemma 2.2§i},has a unique representation
(Ta, wa) WhereTy = (Ta; ¢4) is anA-tree andwy : E(Ty) — R0, Consequently, if we
let A4 (e) = exp(—w4(e)) for each edge of 74 theni s € Int(B(74)) and the restriction
of p 1o (5) iS pzyap- Let f ={(A,Ta): A €mp} andr = (ha: A € mp). Then,
p=vr) e yr(nt(B(f)) and sincep determinesf uniquely the disjointness property
described in (cw2) also holds.
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For (cw3) suppose that € ¥ ¢ (B(f)) — ¥ r(INt(B(f))), wheref = {(A, T4): Aem}.
Let p4 denote the restriction o to (*2‘) Then,pa = p(z, .1, for someiry: E(T4) —
[0, 1]. Consider

EQ ={e€ E(Ta): 2a(e)=0} and E}={ec E(Ta): rale)=1}.

Contract all the edges @f; in Ei. Also, delete each edgeEﬁ. Finally for any unlabelled
vertexv of 74 that becomes, after this edge contraction and deletion process, incident with
just two edges—sayi, e;—we deletev and contract the patby, ez to obtain a single
edgee, say, to which we assign the weighfi (e1)A4(e2). In this way we obtain ark -
forest f’ = {(B,Ty): B e n'} where f’ < f and an edge weightinj, : E(7;) — (0, 1)

for B e 7/, such that, foralk, y € X,

_ Py, y), if 3B ex’withx,ye B,
pix.) {0, o otherwise

Thus, there is an element in (Bt f)) that maps top under ;. Now, sincep ¢
Y r(INt(B(f))) it follows that for at least onel € = we havelEgl + |E/§| > 1 and so
f' < f. Thisimplies din{f") < dim(f) thereby establishing property (cw2).

Finally it remains to show that the associatign— ¥ (B(f)) preserves the poset
structure—thatisf < g impliesy s (B(f)) € ¥ (B(g)).

Let p € ¥ (B(f)). Since f < g, the trees inf are obtained from the trees by
collapsing and deleting certain edges. Thus it is easily checked (following the types of
arguments used earlier in this proof) that we may assign edge weight 1 to each edge of
any tree ing that is collapsed, and edge weight O to each edge of any treehat is
deleted, and assign the remaining edge weights to the tregsjpropriately to obtain
an assignment € B(g) such thatp = ¥,(1), as required. This completes the proof of
Theorem 3.3. O

Notice that the cell decomposition givenTimeorem 3.3 induces a corresponding cell
decomposition of (X, T).

4. Structural properties of the Tuffley poset

In this section we provide an alternative description of the partial oiden S(X) by
explicitly describing the coatoms of any elemefie S(X). We use this description to
show that the Tuffley poset has certain nice structural properties.

Let f ={(A,74): A en}eSX). Select one of the elements gf—say (A, 74)—
together with a splitB|C € X' (74). Delete(A, 74) from f and replace it by either one of
the following:

e (A, T;) whereX(T,) = X(7T4) — {B|C}, an operation that we cadidge contraction
(ono);
e the pair(B, 74|B) and(C, 74|C), an operation that we catldge deletiorfon o).
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Given anX-forest, f = {(A,74): Aen}let

(H=J =1

Aem

which, in view of Proposition 2.1, we may view as the set of edges in
Clearly, for anyo € X (f) the set obtained by contraction en denotedf/o, or by
edge deletion om, denotedf — o, results in anX-forest. Furthermore,

| Z(f/o)|=|ZH| -1 (2)

and
|Z(H|-3<|2(f—0)|<|Z(H)| -1 3)

We will say that the edge deletioh— f — o issafeif | X(f —o)|=|2(f)| — 1.

The following easily checked lemma provides the graph theoretic interpretation of a safe
edge deletion, where we say that a vertex irKatree isunsupportedf it is unlabelled and
of degree 3.

Lemma 4.1. For an X-forest f, an edge deletiorf — f — o is safe if and only if neither
endpoint of the edgethat corresponds te in f is unsupported.

We define anelementary operatioron an element ofS(X) to be either an edge
contraction, or a safe edge deletion.

The following result describeS(X) in terms of these operations, and establishes some
further structural properties. To describesle we recall some further concepts concerning
posets (see [3,4]).

Let (S, <) be an arbitrary poset.

e Anelementf’ € S is acoatomof an elementf € S if ' < f and there is no element
g € S satisfyingf' <g < f.

e For f, g € S theinterval betweenf andg, denoted f, ¢] is the set of all elements
h € S satisfyingf <h < g.

e (S, <) is pureif all maximal chains have the same finite length, in which case there
exists arank functionp on S that associates to each elemgnt S the length of a
maximal chain that hag as its maximum element. The rank of an interjAlg] is
defined as(g) — o (f).

e A posetisthin if any interval of rank 2 has cardinality four.

Theorem 4.2. Suppose thatX is a finite set andf, /' € S(X). Then the following
statements hold.

() f' < fifandonlyif f' can be obtained fronf by any sequence of contraction and
deletion operations, in which case we can insist that all contractions occur first, and
that all the subsequent deletions are safe.
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(i) s’ is a coatom off if and only if f' can be obtained frormy by one elementary
operation.

(i) S(X) is a pure poset, and for an elemefit= {(A, 74): A € n} of S(X), its rank,
denotedo(f) is given by

p(f)=|Z()]-

(iv) S(X) is thin.

(v) The maximal elements 6 X) are precisely the elemengsfor which f = {(X, 7)}
and with| X (7)| = 2| X| — 3.

(vi) The minimal elements of(X) are precisely theX-forests of the formf =
{(A,T4): Aerm},withX(Ty)=0forall Aemx.

Proof. (i) Supposef € S(X) ando € X (f). Clearly f/o, f — o < f. It inmediately
follows that if /' € S(X) and f’ can be obtained fronf by a sequence of contraction and
deletion operations, theff < f.

Conversely, supposg ' € S(X) with /' < f. Let f ={(A,T4): Aen}andf =
{(B,Tg): Ben'} with [7| < |n'|. If A= UBE[A B for somel, C 7/, then X(Ty) €
X (T4|B), sincef’' < f.ForB e Iy, let

Sap={E|F € 2(Ta): ENB|FNB ¢ (X(Tp) U{|B})}

and let¥4 = (Jpc;, Zan, WhereA e x and B € n’. For eachA € r contract every split
o € X4 of Ty (in any order) to obtain a treg;” with (7)) = X¥(Ty) — Xa. If [7| = |7,
then this sequence of contractions yields

So supposer| < |7'|. Sincef’ < f,foreachB #£ B’ € I4,thereissomé& |F € X (74)
with B € E and B’ C F. Let X’ denote the collection of all such splis|F. Then
X% € (7). Now, in case the edge df; corresponding to some € X} contains an
unsupported vertex, contract one of the other edg&5'dhat is incident with this vertex.
Perform all of these contréions (in any order) for eacld € 7. The deletion of an edge
corresponding to any € X; in the resultingX-forest is safe. Delete all of these edges (in
any order). The resulting -forest equaly’. This completes the proof of (i).

(i) This follows immediately from (i).

(iii) Suppose f,g € S(X) with g < f. In view of (i), (2) and (3), we have
12— 12 =>1and if | X(f)] — |¥(g)| > 1 then there must exigt € S(X) with
g <h< f. Now, supposeg = h1 < hp < --- < h, = f is a maximal chain. Then it
follows by our observations that’ (h;4+1)| — | ¥ (h;)] =1 foralli=1,...,n — 1 and
| Z(f)] — | X (g)| = n. Thus (ii) holds.

(iv) Supposd f, g] is an interval inS(X) with rank 2, so thatf can be obtained from
g by two elementary operations. Then eitt@th of these operations are contractions or
both deletions, in which case it is easy to check ffifitg]| = 4 holds, or one of these
operations is a contraction and the other a deletion. For this latter situation it is also easy to
check that[ f, g]| = 4 holds if the operations are performed on non-incident edggs of
whereas if the edges are incident a straightvBrd case-by-case check yields the same
conclusion.
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(v) This follows as an easy consequenceld# fact that a maxia compatible split
system onX must have cardinality|X| — 3 (see, e.g., [2]).

(vi) If f={(A,74): A er}isaminimal element of(X), then by (02)(i) it follows
that X (74) = ¢ for all A € =. Moreover, by (O2)(ii) it follows that any such element of
S(X) isminimal. O

Note that part (v) of the previous theorem implies that éorests that correspond
to the maximal elements &&(X) are precisely theX-trees7 = (T; ¢) for which ¢ is
a bijection fromX to the set of leaves of', and for which each interior vertex &f
has degree 3. Moreover, in view of part (vi) there is an obvious bijection between the
collection of partitions ofX and the minimal elements &f(X), obtained by associating
to the partitionrr the set{(A, 74): A € n} where7y is the A-tree consisting of a single
vertex labelled by all the elements af

We end this section by making some general comments about the existence of upper
and lower bounds for an arbitrary collectibfi, f2, ..., fi} of elements fronS(X). First,
even wherk = 2 there may not exist an upper bound, or a lower bound, to this collection
in S(X). Furthermore, even when upper bounds (respectively lower bounds) exist, there
may nhot be a unique least upper bound (respectively greatest lower bound).

The existence question for upper bounds generalizes a well known problem in com-
putational biology called theharacter compatibility problerfi0]. To understand this we
require the following definitions.

e Supposer is a partition ofX, and7 = (T'; ¢) is anX-tree. Thenrt is said to beconvex
on7 if and only if, for all C, C" € = with C # C’, there existsA|B € X (7) such that
CCA,C'CB.

e A collection{ry, 7o, ..., mx} of partitions ofX is said to becompatibleif and only if
there exists aiX -tree7” so thatr; is convex orZ foralli € {1,2,...,k}.

The relevance of this condition to the Tuffley poset arises by associating each partition
7 of X to the rank 0 elemer{(A, 74): A € w} of S(X), whereX (74) =0 forall Aex.
Furthermore, under this association we have the following result.

Proposition 4.3. A collection{r1, 72, . .., i} of partitions of X is compatible if and only
if the set{ f1, fo, ..., fi} of associated rank elements o§(X) have an upper bound in
S(X).

Determining whether a collection of partitions is compatible is NP-complete [10], which
suggests that it is unlikely that there is a good characterization for when an arbitrary subset
of S(X) has an upper bound. It is not clear if there is a good characterization for when
an arbitrary subset af(X) has a lower bound, although it is possible to give reasonable
characterizations for whengair of elements inS(X) have an upper (or a lower) bound.

We will describe these characterizations elsewhere when we consider further structural
properties of the Tuffley poset including its Mébius function.
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5. Topology of the edge-product space

In this section we consider topological propertie€ok) and£(X, T). Clearly, both
of these spaces are compact since theytlecontinuous image of compact spaces. We
now show that (X) and€(X, T) are alsacontractible(formally, the identity map on each
of these spaces is homotopic to a constarp)aad so can be continuously ‘shrunk’ to a
point. In particular, it follows thag (X) and£(X, T) are connected.

Proposition 5.1.

(i) Forevery0< B8 <1,andp e &(X),
B-pel(X).

(i) £(X)and&(X, T) are contractible.

Proof. For part (i) suppose the € £(X), i.e., p = p(r,) for some treel’ = (V, E) with
leaf setX andi: E — [0, 1]. Forg € [0, 1] let A5 : E — [0, 1] be defined as follows:

hp(e) = Ae), if e is an interior edge
B =\ a(e)/B, otherwise

Then it is easily checked that

B P =D

and soB - p € £(X), which establishes (i).
For part (ii) the map

H:EX) x[0,1] = EX), prB-p,

is a homotopy from a constant map to the identity mag @xi) and saf(X) is contractible.
Furthermore H restricts to£ (X, T) to provide a homotopy from the constant map to the
identity map or€ (X, T). This completes the proof.0

It is worth noting for anyx € X, there is a natural embeddirg& (X — {x}) — £(X)
and a natural surjectioyf : £(X) — £(X — {x}) such thatf o e is the identity map on
E(X — {x}]); thus&E(X — {x}) is aretractof £(X).

The mape is defined as follows: For any € £(X — {x}), lete(p): (’2‘) — [0, 1] satisfy

N P, y), for{y y} <X —{x},
e (r.y) = {0, otherwise

Let f(p) be the restriction op to (*3*!). Then it is straight-forward to verify that
e(p) e £E(X), thatf(p) € £(X — {x}) and that the mapsand f are continuous withf o e
the identity map orf (X — {x}).
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Describing £(X) up to homeomorphism appears (as might be expected) to be a
somewhat harder problem. To understand this problem it would be useful to relate
topological properties of (X) with those of the geometric realizati¢ (X) || of the order
(simplicial) complex ofS(X) [3, Section 9.3]. The following proposition, which can be
regarded as a discrete analogue of Proposition 5.1, implie€thgt and ||S(X)| are at
least homotopy equivalent.

Proposition 5.2. ||S(X)|| is contractible.
Proof. Consider the following two maps
m1,mz2.S(X) = S(X)

defined as follows. Forf = {(A,T4): A € n} € S(X), m1(f) replaces(A, T) by
(A, T9), whereX(T9) = X(Ty) U {{a}|A — {a}: a € A}.

The mapm2(f) replacegA, Ty) by (A, T;), whereX(7;) = 0.

Then, for all f € S(X) we have

f<mi(f) and mo(f) < f.

Furthermorems o m1(f) = fo where fo = {({x}, 7): x € X}, whereX (7,) = ¥, which
is a minimal element ofS(X). From [3, Corollary 10.12], it follows thafS(X)| is
homotopic to||m1(S(X))|l, which in turn is homotopic tdjmz o m1(S(X))|. However
this last space consists of a single element, anf¥&)|| is contractible as claimed.O

If the cell decompositio@x = {(B(f), ¥ r): f € S(X)} of £(X) givenin Theorem 3.3
wereregular, that is, for eacly’ e S(X) ¥y mapsB(f) homeomorphically onto its image,
then it would follow that€ (X) is homeomorphic tS(X)|| (cf. [3, 12.4(ii)]). Itis straight-
forward to check thafy is regular when X| < 3, and, using topological arguments, that
the cell decompositioninduced By on&(X, T) is regular wherf is a tree having exactly
one interior vertex (Bill Baritompa, personal communication). Moreover, it can be shown
thatCy is regular ifS(X) has arecursive coatom orderingand that such orderings exist
for S(X) when|X| < 4.

6. Structureof thefibersof Ar

We conclude with a description of the topological and combinatorial structure of the
fibers of the mapir over points in€ (X, T') and show that they have attractive topological
and combinatorial properties. Part of our motivation for investigating these fibers is to
obtain a better understanding of the topology¥ ¢X).

Consider the mapty from [0, 1157 to £(X, T) defined by — p(r.;). Figure 3
illustrates the 2-dimensional fibeﬁ;l(O) of Ay overO for a treeT € 7(X) where
X={1,23,4)}.
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Fig. 3. (a) Atreel € 7(X) for X = {1, 2, 3, 4}. (b) The fiber of the mapi; overO.

In order to describe the structure of the fibers of the mapin general we need to
introduce a number of further concepts and results.

Supposel’ = (V, E) is a tree withX a subset of its leaf set. A sétC E of edges is
said to be afisolating set forX in T if the graph(V, E — I) has no two elements & in
the same component. An isolating $etf X in 7 is said to beaminimalif no proper subset
of I is anisolating set foX in T.

Proposition 6.1. Let T = (V, E) be a tree with leaf set containingj. Then any minimal
isolating set forX in T has cardinality| X | — 1.

Proof. We use induction onX|. The result clearly holds forX| < 2. Supposd is a
minimal isolating set foX in T, where| X| > 2. Select a leaf vertdxe X, and lete = {v, [}
be the edge of" incident with/. Let T’ denote the tree obtained frofhby deleting leai
and edge.

There are two possibilities:

(i) ecI,and
(i) e¢ 1.

In case (i) letI’ = I — {e}. Then!’ is an isolating set foX — {I} in T'. Furthermore,
I’ is a minimal isolating set foX — {/} in T, for if a proper subset” of I’ were an
isolating subset foX — {I} in T’ thenI” U {e} would be an isolating subset f&f in T,
which contradicts the minimality assumption én Thus, by the inductive hypothesis,
|[I'l =|X — {I}] — 1 and sg/| = | X| — 1 which establishes the inductive step in case (i).

Now consider case (ii). Then for each elemert X — {/} the path fromv to x includes
at least one edge ih. Select any elemeni € X — {/} and leteg denote the first edge on
the path fromv to xg that lies inI. ThenI — {ep} is an isolating set fok — {/} in T’, and as
in case (i) it is also easily verified that— {eg} is @ minimal isolating set fok — {I} in T’.
Thus, by the inductive hypothesis we have- {eo}| = | X — {I}| —1,and sd/| = | X| — 1,
thereby establishing the inductive step in case (ii). This completes the proof.

We now describe the structure of the fibreAf over the elemem e £(X, T).
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Proposition 6.2. LetT be a tree with leaf seX. ThenA;l(O) is a contractible regular cell
complex whose dimension is equal to the number of interior vertic&s Blrthermore,

this space is homeomorphic to tgeeometric realization of thgoset of isolating sets for
X in T ordered by reverse inclusion.

Proof. For each isolating sdtfor X in T = (V, E) let
Ap:={1:E—[0,1]: A(e)=0foralle € I}.

Note thatA; is a closed cell of dimensiofE| — |I|, which takes the maximum value
|E| —|X]|+ 1 by Proposition 6.1. Furthermore in any tree with leaf§etE| — | X| + 1 is
the number of interior vertices df.

Let A = A;%(0). Now, & € A if and only if {e € E: A(e) = O} is an isolating set
for X in T. Consequentlyd = [ J; A;. Furthermore, for isolating sets I’ we have
ArN A}, = Ay, and forl € I' we haveA;, € A;. It follows that A is a regular cell
complex. The last statement in the theorem follows immediately from [3, 12.4(ii)].

To show thatA is contractible it suffices to note that the médp A x [0, 1] — A defined
by H (%, t)(e) = (1 — t)1(e) is a homotopy from the identity map to a constant mapion
This completes the proof.O0

We now extend Proposition 6.2 to describe the topology of the fibrdpfover an
arbitrary point in€ (X, 7). We begin with a useful lemma.

Lemma 6.3. For any fixed value € (0, 1) consider the following subsety, of [0, 1]¢
defined by

k
Ag = {(Al,...,kk)e [0, 1) ]_[A,. =9}_

i=1
Then, for eaclt > 1, Ay is homeomorphic to a closgd — 1)-dimensional ball.
Proof. First note that > O implies thaty; > O for all i, for any vectom. € Ag. We may

therefore apply the map— log(z) /log(9) to each component of each elementAf to
obtain a homeomorphism fromy onto

k
{(xl’XZa .. -axk) - (]R>O)k: in = 1}’

i=1
which is the(k — 1)-dimensional simplex. O

Now, letT be atree with leaf seX, lete be an edge of, and suppose thate £(X, T).
We say thak is isolated relative top if p(x, y) = 0 for all pairsx, y € X for which the
path inT connectingr andy containse. Let I (p) (respectivelyNI(p)) denote the sets of
edges off" that are isolated (respectively not isolated) relativg to
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1 5

Fig. 4. For the treel’ pictured, associate a map: E(T) — [0, 1] which maps each edge weighted 0 to
0 and any other edge to an element (6f1). For the associated map = p(r ) in £(X,T), we have
C(p) ={{ea} {e2}, {e3, €6, €7}, {e13, e14}}.

We now define relations oh(p) andNI(p). For two edgeg, ¢’ with either{e, ¢’} C
I(p) or {e,e’} € NI(p) write e ~ ¢’ if eithere = ¢’ or e ande’ are adjacent and all the
edges that are incident with bottande’ are isolated relative tp.

Let us now take the transitive closure ef, restricted to pairs of edges frof(p) to
form an equivalence relation di{p). Similarly, take the transitive closure of, restricted
to pairs of edges fromli(p) to form an equivalence relation d¥i (p). We will let C(p)
denote the equivalence classe\b{p). We illustrate these concepts with an example in
Fig. 4.

Lemma6.4.LetT = (V, E) be a tree with leaf seX, and suppose € £(X, T).

(i) The edges in any equivalence clasg @f) form a connected subgraph ot
(i) The edges in any equivalence cl@ssf NI(p) form a pathinT ando, =[], A(e)
is uniquely determined by.
(i) ForanyA':E(T)— [0,1]let p’ = pir ). If I(p") = I(p) and NI(p") = NI(p) and
ap =[],ec A (e) for all equivalence classes of NI(p) we havep = p'.

Proof. Part (i) and the first part of part (ii) are clear from the definition of the equivalence
relations. For an equivalence claSsof NI(p) let u andv denote the endpoints of the
corresponding path. Then we may select leaves and w, z such that there are edge-
disjoint paths fromx to x andu to y, and edge-disjoint paths fromto w andw to z, and
such thati(e) # O for each edge on each of these four paths, and for each edge the
path betweem andv (if u is a leaf ofT we takex = y = u, while if v is a leaf of T we

takew =z =v). Then
_ P, w)p(y,2)
ap - N
p(x,y)p(w,z)
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where we sep(x,y) =1if x =y, andp(w, z) = 1 if w = z. The proof of part (iii) is
straight-forward, and we leave the details to the reader.

Note that the edges @f are now partitioned by into two types—isolated edges, which
form subtrees, and non-isolated edges which form pathsid(@b, n2(p), ..., denote the
number of interior vertices of the subtrees Bfinduced by the equivalence classes of
isolated edges.

Proposition 6.5. For any pointp € £(X, T), A;l(p) is a contractible regular cell complex
of dimensior}_; > ni + 3 scc () (1Al = D).

Proof. By Lemma 6.4,A;1(p) is precisely the collection of those E — [0, 1] for which

o A(e1)...A(e;) = ap for any equivalence class of NI(p), wherew, is the value
described by Lemma 6.4(ii).

e For each equivalence clags’ of I(p), if we regard the resulting subtreg’ =
(V,E") of T as having leaf set/, and letA’ denote the restriction of to E’ then
p(T/,;L/)(x, y)=0 for all x, yeU.

It follows thatA;l(p) is homeomorphic to the Cartesian product of cells of dimension
|A| — 1 for each equivalence clagsfrom C(p) (by Lemma 6.3), and fibres over zero of
subtrees of". These latter spaces are regular cell complexes whose dimension is precisely
the number of interior vertices of thelstree by Proposition 6.2. Consequeni/lxil(p) is
a regular cell complex whose dimension is as claimed.

To establish the contractability claim we construct a homotopy by considering the two
types of edges, as follows. For each isolated aedigé

H(Ae),1) =1 —1)A(e).

For an equivalence clags, ..., e} € C(p) let

r t/r
H(Me), 1) = A (]_[ x(e)> :

i=1

Then, ag varies from 0 to 1 H provides a homotopy from the identity map to a constant
map onA;l(p) and so this space is contractible, as claimed. This completes the proof.

To illustrate this last proposition, the spangl(p) for the elemenp described in Fig. 4
is homeomorphic to the Cartesian proditl] x [0, 1]2 x F, whereF is the space picture
in Fig. 3(b).
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