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Abstract

We investigate the combinatorics of a topological space that is generated by the set o
weighted finite trees. This space arises by multiplying the weights of edges on paths in tre
is closely connected to tree reconstruction problems involving finite state Markov process
show that this space is a contractible finite CW-complex whose face poset can be describe
partial order on semilabelled forests. We then describe some combinatorial properties of this
showing that, for example, it is pure, thin and contractible.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Posets of trees and forests and associated spaces have been used as a tool in
representation theory of the symmetric group [7,11]. However, recently such object
also appeared in areas of classification such as evolutionary biology [1]. In this pap
introduce a poset on forests of semi-labelled trees that arises naturally from the set o
weighted trees. This space is closely connected to the reconstructability of trees und
Markov random processes and has been called thereconstruction quotientin [12] and also
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been described by Junhyong Kim [6] as a space of “hyperdimensional oranges.” W
define this topological space.

For a treeT , we let V (T ) and E(T ) denote the sets of vertices and edges oT

respectively. For a fixed finite setX we let T (X) denote the (finite) set of treesT that
haveX as their set of leaves (degree one vertices). Given a mapλ :E(T ) → [0,1] define

p = p(T ,λ) :

(
X

2

)
→ [0,1]

by setting, for allx, y ∈ X,

p(x, y) =
∏

e∈P(T ;x,y)

λ(e),

whereP(T ;x, y) is the set of edges in the path inT from x to y.

Let E(X,T ) ⊂ [0,1](X
2) denote the image of the map

ΛT : [0,1]E(T ) → [0,1](X
2), λ �→ p(T ,λ),

and letE(X) be the union of the subspacesE(X,T ) of [0,1](X
2) over all T ∈ T (X). We

call E(X) theedge-product space for trees onX.
Apart from their intrinsic interest, a central motivation for investigating these spac

is that they are intimately connected with tree-indexed Markov process in molec
evolutionary biology [5,9], as we now briefly outline. In these models there is a fixed m
Q of transition rates between states of some set (e.g., nucleotide bases, amino acids
forms a stationary and time-reversible Markov process. The process operates fo
durationd(e) on each edgee of T . Let λ :E(T ) → [0,1] be defined byλ(e) = e−d(e),
and allowλ(e) to equal 0 in order to model ‘site saturation’ (i.e., the limiting value
d(e) → ∞). The Markov process, parameterized by the pair(T ,λ), induces a (marginal
joint probability distribution on the set of state assignments toX. Furthermore it can b
shown that two pairs(T ,λ) and (T ′, λ′) induce the same joint probability distributio
precisely if p(T ,λ) = p(T ′,λ′) (by extending the approach of [12] which established
result whenQ is a symmetric 2× 2 matrix). Consequently, the edge-product space defi
above is homeomorphic to the quotient space where trees withλ-valued edge weights ar
identified if they induce the same Markov process at the leaves for a fixed rate matQ.
We will study this connection further in a subsequent paper.

So far little has been formally established about the topology or geometry ofE(X) (or
E(X,T )) despite considerable interest in the properties of a related space where on
rather than multiplies positive real numbers along paths in trees. This related ‘ad
space has some attractive combinatorial properties (see for example, [1,11]) and its
properties are of interest in applications [1]. However it is the ‘multiplicative’ space
we study here which is the appropriate context for studying Markov process.

In this paper we will show thatE(X) has a naturalCW-complex structure for any finit
setX, give a combinatorial description of the associated face poset, and use this desc
to determine some properties of this poset. We begin in Section 2 by providing
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background terminology and results concerningX-trees and tree metrics. In Section 3
describe aCW-complex structure onE(X) and show how it (and its face poset) can
naturally parameterized by a poset ofX-forests,S(X). In Section 4, we determine som
structural properties ofS(X), in particular showing that it is pure and thin. In Section
we show thatE(X) and the geometric realization ofS(X) are both contractible. Finally i
Section 6 we describe explicitly the fiber of the mapΛT over any point inE(X,T ) showing
that it is a contractible regular cell complex, whose dimension can be readily computed

2. Preliminaries on X-trees and tree metrics

In this section we present some material on trees that is important for the formu
of the results that follow later in the paper. Throughout this paperX will be a finite set.

An X-tree T is a pair (T ;φ) whereT is a tree, andφ :X → V (T ) is a map such
that all vertices inV − φ(X) have degree greater than two. We call the vertice
V −φ(X) unlabelled. Two X-trees(T1;φ1) and(T2;φ2) are isomorphic if there is a grap
isomorphismα :V (T1) → V (T2) such thatφ2 = α ◦ φ1. For anX-treeT = (T ;φ) we let
E(T ) denoteE(T ), the set of edges ofT .

A collection of bipartitions orsplits of X is called asplit systemon X. We will write
A|B to denote the split{A,B}. Given a split systemΣ onX and a subsetY of X, let

Σ|Y = {B ∩ Y |C ∩ Y : B|C ∈ Σ, B ∩ Y 
= ∅, C ∩ Y 
= ∅},

called therestrictionof Σ toY . If σ = B|C ∈ Σ , andB∩Y |C∩Y is contained inΣ|Y then
we will denoteB ∩ Y |C ∩ Y by σ |Y . A split systemΣ is said to bepairwise compatible
if, for any two splitsA|B andC|D in Σ , we have

∅ ∈ {A ∩ C, A ∩ D, B ∩ C, B ∩ D}.

Given anX-tree,T = (T ;φ), and an edgee of T , deletee from T and denote the
vertices of the two connected components of the resulting graph byU andV . If we let
A = φ−1(U) andB = φ−1(V ) then it is easily checked thatA|B is a split ofX, and that
different edges ofT induce different splits ofX. We say that the splitA|B corresponds
to edgee (and visa versa). LetΣ(T ) denote the set of all splits ofX that are induced
by this process of deleting one edge fromT . The following fundamental result is due
Buneman [2].

Proposition 2.1. Let Σ be a split system onX. Then, there exists anX-treeT such that
Σ = Σ(T ) if and only ifΣ is pairwise compatible. Furthermore, in this case,T is unique
up to isomorphism.

Thus we may regard pairwise compatible split systems and (isomorphism class
X-trees as essentially equivalent. This allows us to make the following definitions tha
be useful later.
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• Given anX-tree,T and a non-empty subsetY of X let T |Y be theY -tree for which
Σ(T |Y ) = Σ(T )|Y .

• For an X-tree T and aY -tree T ′, whereY ⊆ X, we say thatT displaysT ′ if
Σ(T ′) ⊆ Σ(T |Y ) (= Σ(T )|Y ).

A further concept that will be useful to us is the notion of a tree metric, which we
describe. Suppose thatT = (T ;φ) is anX-tree, andw :E(T ) → R

>0. Let d(T ,w) :
(
X
2

) →
R

>0 be defined by

d(T ,w)(x, y) =
∑

e∈P(T ;φ(x),φ(y))

w(e).

Any function d :
(
X
2

) → R
>0 that can be written in this way is said to be atree

metric (with representation(T ,w)). Recall that atopological embeddingis a map
between two topological spaces that is one-to-one and bicontinuous (i.e., a map that
a homeomorphism onto its image). Part (i) of the following lemma is a classic result
for example Buneman [2]. For part (ii) the map described is injective by part (i), and
bicontinuous by Theorem 2.1 of [8].

Lemma 2.2.

(i) If d andd ′ are tree metrics onX with representations(T ,w) and(T ′,w′) respectively,
thend = d ′ if and only ifT is isomorphic toT ′ andw = w′.

(ii) For eachX-tree T the map from(R>0)E(T ) to R(X
2) defined byw �→ d(T ,w) is a

topological embedding.

3. A cellular structure for the edge-product space

In this section we show thatE(X) has a natural description as a CW-complex base
forests of trees that are vertex-labelled in a particular way. We begin with a definition

An X-forestis a collectionf = {(A,TA): A ∈ π} where

(i) π forms a partition ofX, and
(ii) TA is anA-tree for eachA ∈ π .

Figure 1 illustrates an example of anX-forest.
We let S(X) denote the set ofX-forests. A routine check (see also [12]) shows t

S(X) is of size 3 and 15 when|X| = 2 and|X| = 3 respectively.
We now describe an order relationship on the set ofX-forests which we show

below gives a poset that is isomorphic to the face poset ofE(X). Informally this order
relation translates as follows—f � g if the trees inf can be obtained from the tree
in g by collapsing certain edges, and deleting certain other edges, with any res
unlabelled vertices of degree 2 being suppressed. We now make this more forma
the terminology introduced in Section 2.
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Fig. 1. AnX-forest forX = {1,2, . . . ,8}, with associated partitionπ = {{1,2,3,4}, {5,6,7}, {8}}.

Let f = {(A,TA): A ∈ π} andf ′ = {(B,T ′
B): B ∈ π ′} be two X-forests. We write

f ′ � f precisely if the following two conditions hold.

(O1) The partitionπ ′ is a refinement of the partitionπ .
(O2) If A = ⋃

B∈J B for someA ∈ π andJ ⊆ π ′ then
(i) for all B ∈ J , TA displaysT ′

B , and
(ii) for all B,C ∈ J with B 
= C there existsF |G ∈ Σ(TA) with B ⊆ F andC ⊆ G.

The proof of the following lemma is routine.

Lemma 3.1. � is a partial order onS(X).

The posetS(X) was first defined (slightly differently) by Christopher Tuffley [12], a
accordingly we call it theTuffley poseton X. In Fig. 2 we pictureS(X) for X = {1,2,3}.
We now clarify its relationship toE(X).

To an X-tree T , we associate the closed ballB(T ) = [0,1]E(T ) and open bal
Int(B(T )) = (0,1)E(T ). More generally, for anX-forestf = {(A,TA): A ∈ π}, we let
B(f ) = ∏

A∈π B(TA) and let Int(B(F )) = ∏
A∈π Int(B(TA)). Note thatB(f ) (respec-

tively Int(B(f ))) is homeomorphic to a closed (respectively open) ball of dimen∑
A∈π |E(TA)| and accordingly we will refer to this quantity as thedimension off , de-

noted dim(f ).
Given anX-treeT = (T ;φ) and mapλ :E(T ) → [0,1] definep(T ,λ) :

(
X
2

) → [0,1] by
setting

p(T ,λ)(x, y) =
∏

e∈P(T ;φ(x),φ(y))

λ(e).

We can extend the correspondenceλ �→ p(T ,λ) to X-forests as follows. Given anX-

forest f = {(A,TA): A ∈ π} let ψf : B(f ) → [0,1](X
2) be defined by setting, forλ =

(λA: A ∈ π),

ψf (λ)(x, y) =
{

p(TA,λA)(x, y), if ∃A ∈ π with x, y ∈ A,

0, otherwise.

Lemma 3.2. For eachX-forestf = {(A,TA): A ∈ π} ∈ S(X) and mapλ = (λA: A ∈ π)

∈ B(f ), we haveψf (λ) ∈ E(X).
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Fig. 2. The Tuffley posetS(X) for X = {1,2,3}.

Proof. Write TA = (TA;φA). Let T ′
A be the tree obtained fromTA by performing the

following operation independently on each vertex: Ifv is a leaf, andφ−1
A (v) has size

k � 2, or if v is an interior vertex andφ−1
A (v) has sizek � 1 then make the elemen

in φ−1
A (v) leaves by attaching each of them by a new edge tov (which is then regarded a

an unlabelled vertex). In this way we obtain a treeT ′
A that has leaf setA, and for which

each edge ofTA has a corresponding edge ofT ′
A. Let λA be the edge weighting ofT ′

A that
assigns the valueλA(e) to any edgee of T ′

A that corresponds to an edge ofTA; otherwise
λA(e) = 1. Finally, letT be any tree obtained by joining together the collection of tr
{T ′

A: A ∈ π} by adding edges arbitrarily that have as their endpoints interior vertic
distinct trees from this set. Note thatT has leaf setX. Let λ be the edge-weighting o
T that agrees withλA for any edge inT ′

A and that takes the value 0 for any edge t
has its endpoint vertices in distinct trees from{T ′

A: A ∈ π}. It is now easily seen tha
ψf (λ)(x, y) = p(T ,λ)(x, y) for all x, y ∈ X and soψf (λ) ∈ E(X), as claimed. �

We now recall the definition of a finite CW-complex [3]. Suppose we have a Haus
topological spaceY and a collectionBα of closed balls of various dimensions, togeth
with associated mapsψα :Bα → Y whereα ranges over a setA. The setsoα = ψα(Int(Bα))

andcα = ψα(Bα) are called theopen cellsandclosed cellsrespectively, corresponding
α. In this setting, points may be regarded as 0-dimensional open cells.

ThenY is afinite CW-complexand the collection{(Bα,ψα): α ∈ A} is said to provide
a cell decompositionof Y if A is finite, and the following three properties hold:

(cw1) ψα|Int(Bα) maps Int(Bα) homeomorphically ontooα .
(cw2) Y is the disjoint union of all open cells.
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(cw3) cα − oα is a union of open cells of lower dimension.

Theface posetof Y is the collection of closed cellscα partially ordered by inclusion.

Theorem 3.3. E(X) is a finite CW-complex, with cell decomposition{(B(f ),ψf ): f ∈
S(X)}. Furthermore, the Tuffley poset(S(X),�) is isomorphic to the face poset ofE(X)

under the map that sendsf to ψf (B(f )).

Proof. First we note that the number ofX-forests is clearly finite. It thus suffices
establish the properties (cw1), (cw2) and (cw3).

To establish (cw1), suppose thatf = {(A,TA): A ∈ π} ∈ S(X). For x, y ∈ A, and
λA ∈ Int(B(TA)), we havep(TA,λA)(x, y) ∈ (0,1).

By Lemma 2.2(ii) the mapping

DA :
(
R

>0)E(TA) → R
(A

2), wA �→ d(TA,wA),

is a topological embedding.

Observe next that the map(exp−) : (R>0)(
X
2) → (0,1)(

X
2) defined by

(tx,y) �→ exp(−tx,y),

and the map(− log) : (0,1)E(T ) → (R>0)E(T ) defined by

(te) �→ − log(te),

are both homeomorphisms.
Now, if pA denotes the restriction ofp to

(
A
2

)
for A ∈ π then

pA(x, y) = e−d(TA,− log(λA))(x,y)

for all x, y ∈ A. Consequently, the mapλA �→ p(TA,λA) is just the composition(exp−) ◦
DA ◦ (− log), which by the proceeding discussion isan embedding. It follows that the ma
ψf is bicontinuous and one-to-one on Int(B(f )) which establishes (cw1).

For (cw2), givenp ∈ E(X), define an associated equivalence relation∼p on X as
follows: Write x ∼p y precisely if p(x, y) 
= 0. Let πp denote the equivalence class
of ∼p. Thus, forx, y ∈ A ∈ πp we may defineδA :

(
A
2

) → R
�0 by

δA(x, y) = − log
(
p(x, y)

)
. (1)

Notice thatδA is a tree metric, and so, by Lemma 2.2(i),δA has a unique representati
(TA,wA) whereTA = (TA;φA) is anA-tree andwA :E(TA) → R

>0. Consequently, if we
let λA(e) = exp(−wA(e)) for each edgee of TA thenλA ∈ Int(B(TA)) and the restriction
of p to

(
A
2

)
is p(TA,λA). Let f = {(A,TA): A ∈ πp} and λ = (λA: A ∈ πp). Then,

p = ψf (λ) ∈ ψf (Int(B(f )) and sincep determinesf uniquely the disjointness proper
described in (cw2) also holds.
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For (cw3) suppose thatp ∈ ψf (B(f )) − ψf (Int(B(f ))), wheref = {(A,TA): A ∈ π}.
Let pA denote the restriction ofp to

(
A
2

)
. Then,pA = p(TA,λA) for someλA :E(TA) →

[0,1]. Consider

E0
A = {

e ∈ E(TA): λA(e) = 0
}

and E1
A = {

e ∈ E(TA): λA(e) = 1
}
.

Contract all the edges ofTA in E1
A. Also, delete each edge inE0

A. Finally for any unlabelled
vertexv of TA that becomes, after this edge contraction and deletion process, inciden
just two edges—saye1, e2—we deletev and contract the pathe1, e2 to obtain a single
edgee, say, to which we assign the weightλA(e1)λA(e2). In this way we obtain anX-
forestf ′ = {(B,T ′

B): B ∈ π ′} wheref ′ � f and an edge weightingλ′
B :E(T ′

B) → (0,1)

for B ∈ π ′, such that, for allx, y ∈ X,

p(x, y) =
{

p(T ′
B,λ′

B)(x, y), if ∃B ∈ π ′ with x, y ∈ B,

0, otherwise.

Thus, there is an element in Int(B(f )) that maps top under ψf ′ . Now, sincep /∈
ψf (Int(B(f ))) it follows that for at least oneA ∈ π we have|E0

A| + |E1
A| � 1 and so

f ′ < f . This implies dim(f ′) < dim(f ) thereby establishing property (cw2).
Finally it remains to show that the associationf �→ ψf (B(f )) preserves the pose

structure—that is,f � g impliesψf (B(f )) ⊆ ψg(B(g)).
Let p ∈ ψf (B(f )). Sincef � g, the trees inf are obtained from the trees ing by

collapsing and deleting certain edges. Thus it is easily checked (following the typ
arguments used earlier in this proof) that we may assign edge weight 1 to each e
any tree ing that is collapsed, and edge weight 0 to each edge of any tree ing that is
deleted, and assign the remaining edge weights to the trees ing appropriately to obtain
an assignmentλ ∈ B(g) such thatp = ψg(λ), as required. This completes the proof
Theorem 3.3. �

Notice that the cell decomposition given inTheorem 3.3 induces a corresponding c
decomposition ofE(X,T ).

4. Structural properties of the Tuffley poset

In this section we provide an alternative description of the partial order� onS(X) by
explicitly describing the coatoms of any elementf ∈ S(X). We use this description t
show that the Tuffley poset has certain nice structural properties.

Let f = {(A,TA): A ∈ π} ∈ S(X). Select one of the elements off —say (A,TA)—
together with a splitB|C ∈ Σ(TA). Delete(A,TA) from f and replace it by either one o
the following:

• (A,T ′
A) whereΣ(T ′

A) = Σ(TA) − {B|C}, an operation that we calledge contraction
(onσ );

• the pair(B,TA|B) and(C,TA|C), an operation that we calledge deletion(onσ ).
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Given anX-forest,f = {(A,TA): A ∈ π} let

Σ(f ) =
⋃
A∈π

Σ(TA)

which, in view of Proposition 2.1, we may view as the set of edges inf .
Clearly, for anyσ ∈ Σ(f ) the set obtained by contraction onσ , denotedf/σ , or by

edge deletion onσ , denotedf − σ , results in anX-forest. Furthermore,∣∣Σ(f/σ)
∣∣ = ∣∣Σ(f )

∣∣ − 1, (2)

and ∣∣Σ(f )
∣∣ − 3 �

∣∣Σ(f − σ)
∣∣ �

∣∣Σ(f )
∣∣ − 1. (3)

We will say that the edge deletionf �→ f − σ is safeif |Σ(f − σ)| = |Σ(f )| − 1.
The following easily checked lemma provides the graph theoretic interpretation of

edge deletion, where we say that a vertex in anX-tree isunsupportedif it is unlabelled and
of degree 3.

Lemma 4.1. For anX-forestf , an edge deletionf �→ f − σ is safe if and only if neithe
endpoint of the edgee that corresponds toσ in f is unsupported.

We define anelementary operationon an element ofS(X) to be either an edg
contraction, or a safe edge deletion.

The following result describesE(X) in terms of these operations, and establishes s
further structural properties. To describe these we recall some further concepts concern
posets (see [3,4]).

Let (S,�) be an arbitrary poset.

• An elementf ′ ∈ S is acoatomof an elementf ∈ S if f ′ < f and there is no elemen
g ∈ S satisfyingf ′ < g < f .

• For f,g ∈ S the interval betweenf andg, denoted[f,g] is the set of all element
h ∈ S satisfyingf � h � g.

• (S,�) is pure if all maximal chains have the same finite length, in which case t
exists arank functionρ on S that associates to each elementf ∈ S the length of a
maximal chain that hasf as its maximum element. The rank of an interval[f,g] is
defined asρ(g) − ρ(f ).

• A poset isthin if any interval of rank 2 has cardinality four.

Theorem 4.2. Suppose thatX is a finite set andf,f ′ ∈ S(X). Then the following
statements hold.

(i) f ′ � f if and only iff ′ can be obtained fromf by any sequence of contraction a
deletion operations, in which case we can insist that all contractions occur first
that all the subsequent deletions are safe.
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(ii) f ′ is a coatom off if and only if f ′ can be obtained fromf by one elementar
operation.

(iii) S(X) is a pure poset, and for an elementf = {(A,TA): A ∈ π} of S(X), its rank,
denotedρ(f ) is given by

ρ(f ) = ∣∣Σ(f )
∣∣.

(iv) S(X) is thin.
(v) The maximal elements ofS(X) are precisely the elementsf for whichf = {(X,T )}

and with|Σ(T )| = 2|X| − 3.
(vi) The minimal elements ofS(X) are precisely theX-forests of the formf =

{(A,TA): A ∈ π}, with Σ(TA) = ∅ for all A ∈ π .

Proof. (i) Supposef ∈ S(X) andσ ∈ Σ(f ). Clearly f/σ , f − σ � f . It immediately
follows that iff ′ ∈ S(X) andf ′ can be obtained fromf by a sequence of contraction a
deletion operations, thenf ′ � f .

Conversely, supposef,f ′ ∈ S(X) with f ′ � f . Let f = {(A,TA): A ∈ π} andf ′ =
{(B,T ′

B): B ∈ π ′} with |π | � |π ′|. If A = ⋃
B∈IA

B for someIA ⊆ π ′, thenΣ(T ′
B) ⊆

Σ(TA|B), sincef ′ � f . ForB ∈ IA, let

ΣAB = {
E|F ∈ Σ(TA): E ∩ B|F ∩ B /∈ (

Σ(TB) ∪ {∅|B})}
and letΣA = ⋃

B∈IA
ΣAB , whereA ∈ π andB ∈ π ′. For eachA ∈ π contract every spli

σ ∈ ΣA of TA (in any order) to obtain a treeT ∗
A with Σ(T ∗

A ) = Σ(TA)−ΣA. If |π | = |π ′|,
then this sequence of contractions yieldsf ′.

So suppose|π | < |π ′|. Sincef ′ � f , for eachB 
= B ′ ∈ IA, there is someE|F ∈ Σ(TA)

with B ⊆ E and B ′ ⊆ F . Let Σ∗
A denote the collection of all such splitsE|F . Then

Σ∗
A ⊆ Σ(T ∗

A ). Now, in case the edge ofT ∗
A corresponding to someσ ∈ Σ∗

A contains an
unsupported vertex, contract one of the other edges ofT ∗

A that is incident with this vertex
Perform all of these contractions (in any order) for eachA ∈ π . The deletion of an edg
corresponding to anyσ ∈ Σ∗

A in the resultingX-forest is safe. Delete all of these edges
any order). The resultingX-forest equalsf ′. This completes the proof of (i).

(ii) This follows immediately from (i).
(iii) Suppose f,g ∈ S(X) with g < f . In view of (i), (2) and (3), we have

|Σ(f )| − |Σ(g)| � 1 and if |Σ(f )| − |Σ(g)| > 1 then there must existh ∈ S(X) with
g < h < f . Now, supposeg = h1 < h2 < · · · < hn = f is a maximal chain. Then
follows by our observations that|Σ(hi+1)| − |Σ(hi)| = 1 for all i = 1, . . . , n − 1 and
|Σ(f )| − |Σ(g)| = n. Thus (ii) holds.

(iv) Suppose[f,g] is an interval inS(X) with rank 2, so thatf can be obtained from
g by two elementary operations. Then eitherboth of these operations are contractions
both deletions, in which case it is easy to check that|[f,g]| = 4 holds, or one of thes
operations is a contraction and the other a deletion. For this latter situation it is also e
check that|[f,g]| = 4 holds if the operations are performed on non-incident edges of ,
whereas if the edges are incident a straight-forward case-by-case check yields the sa
conclusion.
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(v) This follows as an easy consequence of the fact that a maximal compatible split
system onX must have cardinality 2|X| − 3 (see, e.g., [2]).

(vi) If f = {(A,TA): A ∈ π} is a minimal element ofS(X), then by (O2)(i) it follows
thatΣ(TA) = ∅ for all A ∈ π . Moreover, by (O2)(ii) it follows that any such element
S(X) is minimal. �

Note that part (v) of the previous theorem implies that theX-forests that correspon
to the maximal elements ofS(X) are precisely theX-treesT = (T ;φ) for which φ is
a bijection fromX to the set of leaves ofT , and for which each interior vertex ofT
has degree 3. Moreover, in view of part (vi) there is an obvious bijection betwee
collection of partitions ofX and the minimal elements ofS(X), obtained by associatin
to the partitionπ the set{(A,TA): A ∈ π} whereTA is theA-tree consisting of a singl
vertex labelled by all the elements ofA.

We end this section by making some general comments about the existence o
and lower bounds for an arbitrary collection{f1, f2, . . . , fk} of elements fromS(X). First,
even whenk = 2 there may not exist an upper bound, or a lower bound, to this colle
in S(X). Furthermore, even when upper bounds (respectively lower bounds) exist,
may not be a unique least upper bound (respectively greatest lower bound).

The existence question for upper bounds generalizes a well known problem in
putational biology called thecharacter compatibility problem[10]. To understand this w
require the following definitions.

• Supposeπ is a partition ofX, andT = (T ;φ) is anX-tree. Thenπ is said to beconvex
onT if and only if, for all C,C′ ∈ π with C 
= C′, there existsA|B ∈ Σ(T ) such that
C ⊆ A,C′ ⊆ B.

• A collection{π1,π2, . . . , πk} of partitions ofX is said to becompatibleif and only if
there exists anX-treeT so thatπi is convex onT for all i ∈ {1,2, . . . , k}.

The relevance of this condition to the Tuffley poset arises by associating each pa
π of X to the rank 0 element{(A,TA): A ∈ π} of S(X), whereΣ(TA) = ∅ for all A ∈ π .
Furthermore, under this association we have the following result.

Proposition 4.3. A collection{π1,π2, . . . , πk} of partitions ofX is compatible if and only
if the set{f1, f2, . . . , fk} of associated rank0 elements ofS(X) have an upper bound i
S(X).

Determining whether a collection of partitions is compatible is NP-complete [10], w
suggests that it is unlikely that there is a good characterization for when an arbitrary
of S(X) has an upper bound. It is not clear if there is a good characterization for
an arbitrary subset ofS(X) has a lower bound, although it is possible to give reason
characterizations for when apair of elements inS(X) have an upper (or a lower) boun
We will describe these characterizations elsewhere when we consider further str
properties of the Tuffley poset including its Möbius function.



V. Moulton, M. Steel / Advances in Applied Mathematics 33 (2004) 710–727 721

We
h
a

the

t

5. Topology of the edge-product space

In this section we consider topological properties ofE(X) andE(X,T ). Clearly, both
of these spaces are compact since they arethe continuous image of compact spaces.
now show thatE(X) andE(X,T ) are alsocontractible(formally, the identity map on eac
of these spaces is homotopic to a constant map) and so can be continuously ‘shrunk’ to
point. In particular, it follows thatE(X) andE(X,T ) are connected.

Proposition 5.1.

(i) For every0� β � 1, andp ∈ E(X),

β · p ∈ E(X).

(ii) E(X) andE(X,T ) are contractible.

Proof. For part (i) suppose thep ∈ E(X), i.e.,p = p(T ,λ) for some treeT = (V ,E) with
leaf setX andλ :E → [0,1]. Forβ ∈ [0,1] let λβ :E → [0,1] be defined as follows:

λβ(e) =
{

λ(e), if e is an interior edge,
λ(e)

√
β, otherwise.

Then it is easily checked that

β · p = p(T ,λβ)

and soβ · p ∈ E(X), which establishes (i).
For part (ii) the map

H :E(X) × [0,1] → E(X), p �→ β · p,

is a homotopy from a constant map to the identity map onE(X) and soE(X) is contractible.
Furthermore,H restricts toE(X,T ) to provide a homotopy from the constant map to
identity map onE(X,T ). This completes the proof.�

It is worth noting for anyx ∈ X, there is a natural embeddinge :E(X − {x}) → E(X)

and a natural surjectionf :E(X) → E(X − {x}) such thatf ◦ e is the identity map on
E(X − {x}); thusE(X − {x}) is aretract of E(X).

The mape is defined as follows: For anyp ∈ E(X − {x}), let e(p) :
(
X
2

) → [0,1] satisfy

e(p)
(
y, y ′) =

{
p(y, y ′), for {y, y ′} ⊆ X − {x},
0, otherwise.

Let f (p) be the restriction ofp to
(
X−{x}

2

)
. Then it is straight-forward to verify tha

e(p) ∈ E(X), thatf (p) ∈ E(X − {x}) and that the mapse andf are continuous withf ◦ e

the identity map onE(X − {x}).
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Describing E(X) up to homeomorphism appears (as might be expected) to
somewhat harder problem. To understand this problem it would be useful to
topological properties ofE(X) with those of the geometric realization‖S(X)‖ of the order
(simplicial) complex ofS(X) [3, Section 9.3]. The following proposition, which can
regarded as a discrete analogue of Proposition 5.1, implies thatE(X) and‖S(X)‖ are at
least homotopy equivalent.

Proposition 5.2. ‖S(X)‖ is contractible.

Proof. Consider the following two maps

m1,m2 :S(X) → S(X)

defined as follows. Forf = {(A,TA): A ∈ π} ∈ S(X), m1(f ) replaces(A,TA) by
(A,T 0

A), whereΣ(T 0
A ) = Σ(TA) ∪ {{a}|A − {a}: a ∈ A}.

The mapm2(f ) replaces(A,TA) by (A,T ′
A), whereΣ(T ′

A) = ∅.
Then, for allf ∈ S(X) we have

f � m1(f ) and m2(f ) � f.

Furthermore,m2 ◦ m1(f ) = f0 wheref0 = {({x},Tx): x ∈ X}, whereΣ(Tx ) = ∅, which
is a minimal element ofS(X). From [3, Corollary 10.12], it follows that‖S(X)‖ is
homotopic to‖m1(S(X))‖, which in turn is homotopic to‖m2 ◦ m1(S(X))‖. However
this last space consists of a single element, and so‖S(X)‖ is contractible as claimed.�

If the cell decompositionCX = {(B(f ),ψf ): f ∈ S(X)} of E(X) given in Theorem 3.3
wereregular, that is, for eachf ∈ S(X) ψf mapsB(f ) homeomorphically onto its image
then it would follow thatE(X) is homeomorphic to‖S(X)‖ (cf. [3, 12.4(ii)]). It is straight-
forward to check thatCX is regular when|X| � 3, and, using topological arguments, th
the cell decomposition induced byCX onE(X,T ) is regular whenT is a tree having exactl
one interior vertex (Bill Baritompa, personal communication). Moreover, it can be sh
thatCX is regular ifS(X) has arecursive coatom ordering, and that such orderings exi
for S(X) when|X| � 4.

6. Structure of the fibers of ΛT

We conclude with a description of the topological and combinatorial structure o
fibers of the mapΛT over points inE(X,T ) and show that they have attractive topologi
and combinatorial properties. Part of our motivation for investigating these fibers
obtain a better understanding of the topology ofE(X).

Consider the mapΛT from [0,1]E(T ) to E(X,T ) defined byλ �→ p(T ,λ). Figure 3
illustrates the 2-dimensional fiberΛ−1

T (0) of ΛT over 0 for a treeT ∈ T (X) where
X = {1,2,3,4}.



V. Moulton, M. Steel / Advances in Applied Mathematics 33 (2004) 710–727 723

o

t

l

,

s,
).

n

Fig. 3. (a) A treeT ∈ T (X) for X = {1,2,3,4}. (b) The fiber of the mapΛT over0.

In order to describe the structure of the fibers of the mapΛT in general we need t
introduce a number of further concepts and results.

SupposeT = (V ,E) is a tree withX a subset of its leaf set. A setI ⊆ E of edges is
said to be anisolating set forX in T if the graph(V ,E − I) has no two elements ofX in
the same component. An isolating setI of X in T is said to beminimalif no proper subse
of I is an isolating set forX in T .

Proposition 6.1. Let T = (V ,E) be a tree with leaf set containingX. Then any minima
isolating set forX in T has cardinality|X| − 1.

Proof. We use induction on|X|. The result clearly holds for|X| � 2. SupposeI is a
minimal isolating set forX in T , where|X| > 2. Select a leaf vertexl ∈ X, and lete = {v, l}
be the edge ofT incident withl. Let T ′ denote the tree obtained fromT by deleting leafl
and edgee.

There are two possibilities:

(i) e ∈ I , and
(ii) e /∈ I .

In case (i) letI ′ = I − {e}. ThenI ′ is an isolating set forX − {l} in T ′. Furthermore
I ′ is a minimal isolating set forX − {l} in T ′, for if a proper subsetI ′′ of I ′ were an
isolating subset forX − {l} in T ′ thenI ′′ ∪ {e} would be an isolating subset forX in T ,
which contradicts the minimality assumption onI . Thus, by the inductive hypothesi
|I ′| = |X − {l}| − 1 and so|I | = |X| − 1 which establishes the inductive step in case (i

Now consider case (ii). Then for each elementx ∈ X −{l} the path fromv to x includes
at least one edge inI . Select any elementx0 ∈ X − {l} and lete0 denote the first edge o
the path fromv to x0 that lies inI . ThenI −{e0} is an isolating set forX−{l} in T ′, and as
in case (i) it is also easily verified thatI − {e0} is a minimal isolating set forX − {l} in T ′.
Thus, by the inductive hypothesis we have|I −{e0}| = |X −{l}|− 1, and so|I | = |X|− 1,
thereby establishing the inductive step in case (ii). This completes the proof.�

We now describe the structure of the fibre ofΛT over the element0 ∈ E(X,T ).
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Proposition 6.2. LetT be a tree with leaf setX. ThenΛ−1
T (0) is a contractible regular cel

complex whose dimension is equal to the number of interior vertices ofT . Furthermore,
this space is homeomorphic to the(geometric realization of the) poset of isolating sets fo
X in T ordered by reverse inclusion.

Proof. For each isolating setI for X in T = (V ,E) let

ΛI := {
λ :E → [0,1]: λ(e) = 0 for all e ∈ I

}
.

Note thatΛI is a closed cell of dimension|E| − |I |, which takes the maximum valu
|E| − |X| + 1 by Proposition 6.1. Furthermore in any tree with leaf setX, |E| − |X| + 1 is
the number of interior vertices ofT .

Let Λ = Λ−1
T (0). Now, λ ∈ Λ if and only if {e ∈ E: λ(e) = 0} is an isolating se

for X in T . Consequently,Λ = ⋃
I ΛI . Furthermore, for isolating setsI, I ′ we have

ΛI ∩ Λ′
I = ΛI∪I ′ , and forI ⊆ I ′ we haveΛ′

I ⊆ ΛI . It follows thatΛ is a regular cell
complex. The last statement in the theorem follows immediately from [3, 12.4(ii)].

To show thatΛ is contractible it suffices to note that the mapH :Λ×[0,1] → Λ defined
by H(λ, t)(e) = (1− t)λ(e) is a homotopy from the identity map to a constant map onΛ.
This completes the proof.�

We now extend Proposition 6.2 to describe the topology of the fibre ofΛT over an
arbitrary point inE(X,T ). We begin with a useful lemma.

Lemma 6.3. For any fixed valueθ ∈ (0,1) consider the following subsetΛθ , of [0,1]k
defined by:

Λθ =
{

(λ1, . . . , λk) ∈ [0,1]k:
k∏

i=1

λi = θ

}
.

Then, for eachk � 1, Λθ is homeomorphic to a closed(k − 1)-dimensional ball.

Proof. First note thatθ > 0 implies thatλi > 0 for all i, for any vectorλ ∈ Λθ . We may
therefore apply the mapt �→ log(t)/log(θ) to each component of each element ofΛθ to
obtain a homeomorphism fromΛθ onto

{
(x1, x2, . . . , xk) ⊆ (

R
�0)k:

k∑
i=1

xi = 1

}
,

which is the(k − 1)-dimensional simplex. �
Now, letT be a tree with leaf setX, lete be an edge ofT , and suppose thatp ∈ E(X,T ).

We say thate is isolated relative top if p(x, y) = 0 for all pairsx, y ∈ X for which the
path inT connectingx andy containse. Let I (p) (respectivelyNI(p)) denote the sets o
edges ofT that are isolated (respectively not isolated) relative top.
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Fig. 4. For the treeT pictured, associate a mapλ :E(T ) → [0,1] which maps each edge weighted 0
0 and any other edge to an element of(0,1). For the associated mapp = p(T ,λ) in E(X,T ), we have
C(p) = {{e1}, {e2}, {e3, e6, e7}, {e13, e14}}.

We now define relations onI (p) andNI(p). For two edgese, e′ with either{e, e′} ⊆
I (p) or {e, e′} ⊆ NI(p) write e ∼ e′ if either e = e′ or e ande′ are adjacent and all th
edges that are incident with bothe ande′ are isolated relative top.

Let us now take the transitive closure of∼p restricted to pairs of edges fromI (p) to
form an equivalence relation onI (p). Similarly, take the transitive closure of∼p restricted
to pairs of edges fromNI(p) to form an equivalence relation onNI(p). We will let C(p)

denote the equivalence classes ofNI(p). We illustrate these concepts with an example
Fig. 4.

Lemma 6.4. LetT = (V ,E) be a tree with leaf setX, and supposep ∈ E(X,T ).

(i) The edges in any equivalence class ofI (p) form a connected subgraph ofT .
(ii) The edges in any equivalence classC of NI(p) form a path inT andαp := ∏

e∈C λ(e)

is uniquely determined byp.
(iii) For anyλ′ :E(T ) → [0,1] let p′ = p(T ,λ′). If I (p′) = I (p) and NI(p′) = NI(p) and

αp = ∏
e∈C λ′(e) for all equivalence classesC of NI(p) we havep = p′.

Proof. Part (i) and the first part of part (ii) are clear from the definition of the equivale
relations. For an equivalence classC of NI(p) let u andv denote the endpoints of th
corresponding path. Then we may select leavesx, y andw,z such that there are edg
disjoint paths fromu to x andu to y, and edge-disjoint paths fromv to w andv to z, and
such thatλ(e) 
= 0 for each edgee on each of these four paths, and for each edgee on the
path betweenu andv (if u is a leaf ofT we takex = y = u, while if v is a leaf ofT we
takew = z = v). Then

αp =
√

p(x,w)p(y, z)

p(x, y)p(w, z)
,



726 V. Moulton, M. Steel / Advances in Applied Mathematics 33 (2004) 710–727

h

of

x

sion
of
cisely

e two

ant
f.

e

where we setp(x, y) = 1 if x = y, andp(w, z) = 1 if w = z. The proof of part (iii) is
straight-forward, and we leave the details to the reader.�

Note that the edges ofT are now partitioned byp into two types—isolated edges, whic
form subtrees, and non-isolated edges which form paths. Letn1(p),n2(p), . . . , denote the
number of interior vertices of the subtrees ofT induced by the equivalence classes
isolated edges.

Proposition 6.5. For any pointp ∈ E(X,T ), Λ−1
T (p) is a contractible regular cell comple

of dimension
∑

i�1 ni + ∑
A∈C(p)(|A| − 1).

Proof. By Lemma 6.4,Λ−1
T (p) is precisely the collection of thoseλ :E → [0,1] for which

• λ(e1) . . .λ(er ) = αp for any equivalence classC of NI(p), whereαp is the value
described by Lemma 6.4(ii).

• For each equivalence classE′ of I (p), if we regard the resulting subtreeT ′ =
(V ,E′) of T as having leaf setU , and letλ′ denote the restriction ofλ to E′ then
p(T ′,λ′)(x, y) = 0 for all x, y ∈ U .

It follows thatΛ−1
T (p) is homeomorphic to the Cartesian product of cells of dimen

|A| − 1 for each equivalence classA from C(p) (by Lemma 6.3), and fibres over zero
subtrees ofT . These latter spaces are regular cell complexes whose dimension is pre
the number of interior vertices of the subtree by Proposition 6.2. Consequently,Λ−1

T (p) is
a regular cell complex whose dimension is as claimed.

To establish the contractability claim we construct a homotopy by considering th
types of edges, as follows. For each isolated edgee let

H
(
λ(e), t

) = (1− t)λ(e).

For an equivalence class{e1, . . . , er } ∈ C(p) let

H
(
λ(e), t

) = λ(e)1−t

(
r∏

i=1

λ(e)

)t/r

.

Then, ast varies from 0 to 1,H provides a homotopy from the identity map to a const
map onΛ−1

T (p) and so this space is contractible, as claimed. This completes the proo�
To illustrate this last proposition, the spaceΛ−1

T (p) for the elementp described in Fig. 4
is homeomorphic to the Cartesian product[0,1]×[0,1]2×F , whereF is the space pictur
in Fig. 3(b).
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