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Abstract

Pure Adaptive Search is a stochastic algorithm which has been analyzed for continuous global
optimization. When a uniform distribution is used in PAS, it has been shown to have complexity
which is linear in dimension. We define strong and weak variations of PAS in the setting of
finite global optimization and prove analogous results. In particular, for the n-dimensional lattice
{1,...,k}", the expected number of iterations to find the global optimum is linear in n. Many
discrete combinatorial optimization problems, although having intractably large domains, have
quite small ranges. The strong version of PAS for all problems, and the weak version of PAS for
a limited class of problems, has complexity the order of the size of the range.
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1. Introduction

Pure adaptive search (PAS) is a random search method which has been defined and
analyzed for continuous global optimization [5,6]. Pure adaptive search generates a
sequence of feasible points according to a probability distribution, with the stipulation
that the points always have strictly improving objective function values. It has been
shown [6] that pure adaptive search has an encouraging feature: for continuous func-
tions satisfying a Lipschitz condition the expected number of PAS iterations to reach
convergence is proportional to the dimension.

In this paper we examine PAS for the global optimization problem in which the
domain is a finite set of points. We begin by introducing two variations of finite PAS,
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weak and strong. For each variation, we derive an expression for the expected number
of iterations to reach the global optimum, and a simple upper bound. In the special
case where the domain is the n-dimensional lattice {1,...,%}", and the vertices are
sampled according to a uniform distribution, the expected number of iterations to exact
convergence is proportional to n, the “dimension.”

As in the continuous case, strong PAS is inefficient to implement for general discrete
functions. Weak PAS appears to be related closely to discrete optimization applications,
for example, genetic reconstruction via the “Great Deluge” algorithm [2]. Our analysis
of finite PAS suggests that such algorithms may have reasonable complexity.

2. Analysis of finite PAS
2.1. Terminology

In this paper we consider the following finite global optimization problem:

minimize f(x)
subject to x € §,

where f(x) is a real-valued function on a finite set S.

The following algorithms for finite optimization are considered in this paper. Pure
random search (PRS) [1] samples the domain at each iteration according to a fixed
distribution. Strong pure adaptive search samples from that part of the domain that gives
a strictly improving objective function value at each iteration. This is a translation of
PAS from the continuous to the finite problem. By relaxing the strictness, we can define
weak pure adaptive search. This algorithm samples from that part of the domain which
gives an equal or improving objective function value.

Let yi < y» < --- < yk be the distinct objective function values. Notice that there
may be more than K points in S. For m =0, 1,..., let the random variable Y,, be the
objective function value on the mth iteration of PRS. Note that 13, 11, . . . are independent
and identically distributed. Given a probability measure x on S, we define a probability
measure 7 = (my,...,7x) on the range of f as follows. Let 7; be the probability
that any iteration of pure random search attains a value of y;. That is 7; = P(}p =
i) = u(f~'(y)) for j =1,2,..., K. Throughout this paper p; denotes Y ., m; the
probability that PRS attains a value of y; or less.

We now describe the link between PRS and the two versions of finite PAS. Epoch
i > 0 s said to be a record of the sequence {Y,,} for strong PAS if ¥; < min{Yp, ..., %1}
and for weak PAS if ¥; < min{}p,...,¥_1}. Epoch i = 0 is always considered to be
a record. The corresponding value Y; is called a record value. Let the random variable
W,, be the objective function value on the mth iteration of PAS, and let R(m) be the
epoch of the mth record of PRS. Then as in the continuous problem, PAS consists of the
record values of pure random search. That is, W,, is stochastically equivalent to Yz(m).
This is directly analogous to [6, Lemma 3.1] and is proved identically.
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The stochastic process {W,, | m = 0,1,...} for either weak or strong PAS can be
modeled as a Markov chain with states yj, ..., yx, where state y; represents the global
optimum. The initial probability distribution for W; is given by #r. In standard Markov
chain terminology [4], y; is the absorbing state of this chain and all other states are
transient. Finite PAS converges when the chain reaches the absorbing state. The expected
number of iterations to convergence can be expressed in terms of the transition matrix
of the Markov chain. The expected number of iterations to solve the problem used in
this paper does not include a stopping rule, and thus indicates the average computational
effort to sample the global optimum but not necessarily to confirm it. We present a
simple direct probabilistic argument here.

2.2. General analysis

Theorem 1. The expected number of iterations to solve the finite optimization problem
is

(i) 1+ Zf:z 7/ pj for strong PAS and

(ii) 14 3%, mi/pj_1 for weak PAS
where p; = Z{=1 .
Proof. Let the random variable X be the number of iterations required to solve the finite
optimization problem. Then X =1+ X+ - - -+ Xk, where X is the number of iterations
spent in state y;. Thus,

E(X)=1+E(Xp) + -+ E(Xg)
=1+ E(X; [ V)P(W) + -+ + E(Xg | Vi) P(Vi),

where Vj is the event that state y; is visited. Now,

P(V)) =P(V;N{Wo > y;}) + P(V; n{Wo =y;})

K
=Y PV;nBi,;N{Wo >y} +P(V;N{Wo=y}),
i=j+1
where B;; is the event that state y; is visited immediately before a state less than or
equal to y; is visited. Since P(V; | Bij N {Wo > y;}) = 7;/p; and P(Wo = y;) = 7},
we have

K
P(V) =Y P(Vi| BN {Wo> y;))P(Bij| Wo > y;)P(Wo > y))
i=j+1
+ P(V; | Wo = y;)P(Wo =y;)

K
-
=(1-p)—ZL > PBi; | Wo>y) +m;
7 i=jtt

5 7
=(1-p)—L +7;=-L
" pj ’ Pj
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For strong PAS, E(X; | V;) = 1, and E(X) = 1 + Zl-(:zﬂ'j/pj as required. For
weak PAS, once state y; is left, it is never re-entered. As with a geometric distribution,
E(X; | V;) then equals the inverse of the probability of leaving state y;:

E(X; | V) =(pj=1/p)) "' =pj/pj-1.

This yields E(X) = 1 + ijzz 7j/pj—1 as required. O

Note that the hazard rate 7;/p;j—| appears in the formula for the expected time of
weak PAS.

For completeness, the K x K transition matrix P, in standard form, having the (i, j)th
element P[W,, = y; | Wu_i = yi], for strong PAS consists of the first K rows of the
matrix below. For weak PAS, it consists of the last K rows:

1 0 0 0 0
7Tl/p1 0 0 0 0
m/p2  m/p2 0o - 0 0

1 /pk—1 m2/Pk—1 T3/Pk-1 -+ Tk—1/Pk-1 O
| m/pxk m/pxk m/pk - Tk-1/Px TK/Pk |

It follows that P(W,, = y;), the probability of objective function value y; for weak or
strong PAS on the mth iteration, is the ith entry of wP™, with the appropriate P.

The exact expressions given in Theorem 1 are valid for an arbitrary sampling distri-
bution reflected by 7. We turn to obtaining bounds on these expressions.

3. Bounds on performance
3.1. General bounds

An upper bound on the expected number of strong PAS iterations to solve the finite
optimization problem can be stated simply in terms of 7, the probability of sampling
the global optimum with pure random search.

Corollary 2. The expected number of strong PAS iterations to solve the finite optimiza-
tion problem is bounded above by 1 + log(1/m;).

Proof. For 0 < x <1, x < ~log(1 —x),so for j=2,...,K,

7y 7 Dj
— < —log (1 — —) = log (—)
pj Dj Pj-1

Therefore from the theorem, the expected number of iterations is less than 1+log(p2/p1)
+log(p3/pz) + -+ +log(pk/pk—1) =1 +log(1/m). O
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For weak PAS the maximum hazard rate is involved in the bound. Note the term
m;/pj—1 appearing in Theorem 1(ii) can be written as (1 + w;/p;j—1)m;/p;, so a
similar argument as Corollary 2 gives the following corollary.

Corollary 3. The expected number of weak PAS iterations to solve the finite opti-
mization problem is bounded above by 1 + (Mygyaa + 1) log(1/m) where Myazad =
max;=s,..x 77'j/Pj—1-

3.2. Special bounds

Many combinatorical optimization problems of interest have extremely large domains
(e.g., 2100 points) but much smaller ranges (e.g., 100 values). In fact, most purely
discrete problems which are NP-hard fall into this category. A good example is the
MAXCLIQUE problem; given a graph G, find the largest number of vertices which
induces a clique in the graph. In this case the range (the number of vertices in the
graph) is small, but the domain is the set of all graphs on these vertices and is highly
exponential in the range [3].

Clearly, strong PAS has complexity of order K, the size of the range, as it never
requires more than K iterations, and thus is fast for these problems. This cannot be
said for weak PAS (which is closer to practical algorithms). Weak PAS requires a large
number of iterations when 7, /7; is large for some / in the problem. However, an
analogous result for weak PAS holds on problems where these ratios are bounded. The
bounding factor r becomes the constant of proportionality.

Corollary 4. If ;1 /m; < r, then weak PAS has complexity of order K. The expected
number of weak PAS iterations is bounded above by 1+ (K — 1)r.

The following special case shows the upper limit of Corollary 4 is approached.

Corollary 5. Given that m;  r' for r > 1, the expected number of iterations is bounded
below by

(1) K(r —1)/r for strong PAS and

(i) 14+ (K —=1)(r—1) for weak PAS.

Proof. For strong PAS, Theorem 1(i) gives the required value of (r—1) /r Zjil (-
1). This is at least K(r — 1) /r. For weak PAS, Theorem 1(ii) gives the required value
of 1 + X, 7i/pj1 =1+ r Sk mj/p;. This is at least 1+ (K - 1)(r—1). O

3.3. Uniform sampling
In order to compare the performance of pure adaptive search on a finite optimization

problem with that on a continuous problem, we consider the special case in which the
distribution on the objective function values is uniform (i.e., 7; = 1/K for all j).
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Corollary 6. The expected number of iterations for finite global optimization, given a
uniform distribution on the objective function values, is
(i) Z;i] 1/j, bounded above by 1 + log K for strong PAS and

(i) 1+ ZJKJI 1/j, bounded above by 2 + log (K — 1) for weak PAS.

To get the analogous linear complexity result, consider the vertices of an n-dimensional
lattice, {1, ..., k}", with distinct objective function values at the vertices. Here K = k"
and Corollary 6 (for either weak or strong PAS) gives a bound of 2+log k" = 2+nlogk,
an expression of order n.

4, Summary

For an n-dimensional lattice, the expected number of iterations for weak or strong
PAS given a uniform distribution is of order n, consistent with the results for PAS on
a continuous optimization problem. For strong PAS, the expected number of iterations
on a finite optimization problem is bounded by a simple expression involving 7, the
probability of randomly sampling the global optimum. A similar bound for weak PAS
is presented which involves the hazard rate function. This bound may be closer to that
experienced by practical algorithms, and may inspire use of random search methods for
finite optimization.
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