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Abstract. One of the simplest evolutionary models has molecular se-
quences evolving from a common ancestor down a bifurcating phyloge-
netic tree, experiencing point-mutations along the way. However, empir-
ical analyses of different genes indicate that the evolution of genomes
is often more complex than can be represented by such a model. Thus,
the following problem is of significant interest in molecular evolution:
Given a set of molecular sequences, compute a reticulate network that
explains the data using a minimal number of reticulations. This paper
makes four contributions toward solving this problem. First, it shows that
there exists a one-to-one correspondence between the tangles in a reticu-
late network, the connected components of the associated incompatibility
graph and the netted components of the associated splits graph. Second,
it provides an algorithm that computes a most parsimonious reticulate
network in polynomial time, if the reticulations contained in any tangle
have a certain overlapping property, and if the number of reticulations
contained in any given tangle is bounded by a constant. Third, an al-
gorithm for drawing reticulate networks is described and a robust and
flexible implementation of the algorithms is provided. Fourth, the paper
presents a statistical test for distinguishing between reticulations due to
hybridization, and ones due to other events such as lineage sorting or
tree-estimation error.

1 Introduction

One of the most powerful approaches for developing an understanding of the evo-
lution of genomes is phylogenetic analysis of genes at independent loci. However,
optimal phylogenetic reconstructions for such genes are not always concordant
[1]. One possible reason for this is that at the level of organisms, hybridization be-
tween diverging evolutionary lineages is a fundamental process important in the
evolution of organisms [2]. Unfortunately, at the level of individual gene analyses,
the interpretation of hybrid genomes is complicated by phylogenetic error, gene
conversion (events of non-reciprocal recombination) and lineage sorting. Despite

S. Miyano et al. (Eds.): RECOMB 2005, LNBI 3500, pp. 233–249, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



234 D.H. Huson et al.

this complexity, the importance of the issue has motivated the following prob-
lem: Given a set of phylogenetic data that have evolved under a reticulate model
of evolution, what is the most efficient way to reconstruct the underlying reticu-
late network. There has been much interest in this topic, see e.g. [3, 4, 5, 6, 7, 8].
Computationally, the goal is to construct a reticulate network using a minimum
number of reticulations that accounts for the given data. Alternatively, one may
attempt to give lower or upper bounds for the number of reticulations required
to explain the data [9, 10, 11, 7].

In this paper we describe a general frame-work for studying reticulate net-
works, which is based on the theory of splits and splits graphs [12, 13]. In this
setting, a reticulate network N is a generalization of a phylogenetic tree in which
we additionally allow certain reticulation nodes and edges. The set of splits as-
sociated with N is defined as Σ =

⋃
T∈T (N) Σ(T ), where T (N) is the set of all

trees that are induced by N and Σ(T ) is the split encoding of T . We present
four new results.

Our first main result is a Decomposition Theorem that implies the existence
of a one-to-one correspondence between the tangles of a reticulate network N , the
non-trivial connected components of the incompatibility graph IG(Σ(N)) and
the netted components of the splits graph SG(Σ(N)). This is related to similar
results that have been previously described in the context of recombination of
binary sequences under the infinite sites model [14, 11], for which we give a new
formulation, interpretation and proof.

We say that a reticulate network N has the overlapping property, if every
set of tangled reticulations in N has the property that all reticulation cycles
intersect “nicely” along a common “backbone”. Our second main result is an
algorithm that computes the most parsimonious reticulate network this type for
a given input set in polynomial time, if we limit the number of reticulations
contained in any given tangle to k.

Our third main result is an algorithm for drawing reticulate networks. We
have developed a robust and flexible implementation of our approach, which is
freely available as a plug-in for the program SplitsTree [15]. It takes as input
either a set of trees, partial trees or splits and produces as output a (rooted or
unrooted) phylogenetic network indicating both the splits contained in the input
and also the possible ways to resolve each netted component of the splits graph
into a collection of reticulations.

Our fourth main result is a new statistical test for distinguishing between
reticulations due to hybridization, on the one hand, and ones due to other events
such as lineage sorting or tree estimation error, on the other.

To illustrate our algorithms, we apply them to two different gene trees for
New Zealand alpine Ranunculus (buttercups) species based on the nuclear ITS
gene and the chloroplast JSA region [16]. In an Appendix we provide a second
application, namely to haplotype data for the alcohol dehydrogenase locus of
Drosophila melanogaster [11, 17].

We would like to thank Dan Gusfield for a number of very useful discussions.



Reconstruction of Reticulate Networks from Gene Trees 235

2 Phylogenetic Trees and Reticulate Networks

Let X denote a set of taxa. A phylogenetic tree for X, or X-tree, consists of a
tree T = (V,E) in which every node v is either a leaf of degree 1 or an internal
node of degree ≥ 3, together with a node labeling ν : X → V such that every leaf
of T obtains a label [18]. Additionally, we may designate one of the taxa o ∈ X
to be an outgroup and then consider the tree to be “rooted” at the midpoint ρ
of the pendant edge leading to ν(o), in the usual sense. We choose to define the
root in this indirect way because our approach is based on the concept of splits,
i.e. bipartitionings of the taxon set X, for which it is awkward to specify a root
node explicitly.

Let X denote a set of taxa. A reticulate network N = (V,E, ν) consists of a
graph (V,E) with node set V and edge set E and a labeling of the nodes by taxa
ν : X → V . The node set V = VR ∪ VT is partitioned into a set of reticulation
nodes VR and tree nodes VT , and the edge set E = ER ∪ET is partitioned into a
set of reticulation edges ER and tree edges ET . The labeling ν only assigns labels
to nodes in VT and every leaf of N obtains a label. Additionally, we require the
following five properties:

(R1) All nodes have degree �= 2.
(R2) Every reticulation node v ∈ VR is incident to precisely two reticulation

edges, denoted by p(v) and q(v), respectively.
(R3) Every reticulation edge e ∈ ER is incident to exactly one reticulation node.
(R4) Every subgraph of N obtainable by deleting precisely one reticulation edge

p(v) or q(v) for every reticulation node v ∈ VR, is an X-tree. We will use
T (N) to denote the set of all such trees induced by N .

(R5) We will always assume that an outgroup o ∈ X has been specified and
will require for all trees T ∈ T (N) that every reticulation node v ∈ VR is
separated from ν(o) by either p(v) or q(v).

As in the case of trees, we will usually consider N to be rooted at the center
of the pendant edge leading to the node ν(o) labeled by the outgroup o. In
Figure 1 we show an example of a reticulate network N with three reticulations.
In Figure 2(a–b) we show two different trees induced by N . We explicitly allow
the graph to contain unresolved nodes of degree > 3, labeled internal nodes and
nodes with multiple labels.

It follows from these definitions that each reticulation node (or reticula-
tion, for short) v ∈ VR is contained in one or more cycles of the form C =
(v, p(v), w1, e1, . . . , ek−1, wk, q(v), v), C = (v, p(v), w1, e1, . . . , ek−1, wk, v) or C =
(v, q(v), w1, e1, . . . , ek−1, v), with wi ∈ V and ei ∈ E \ {p(v), q(v)} for all i.
Any such cycle C is called a reticulation cycle and we define its backbone as
B(C) = (w1, e1, . . . , ek−1, wk). Note that a reticulation v possesses at most one
reticulation cycle C whose backbone B contains only tree edges and in this case
we call C a tree cycle.

We say that two different reticulations v ∈ VR and v′ ∈ VR are dependent, if
they are contained in reticulation cycles C and C ′, respectively, such that C and
C ′ share at least one edge. Otherwise, they are called independent. (Previous
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Fig. 1. A reticulate network N displaying three reticulations at nodes h1, h2 and h3,

each involving edges pi and qi, with i = 1, 2, 3, respectively. The reticulation at node

h1 is independent of the reticulations at nodes h2 and h3, whereas the latter two are

tangled. The backbone edges of each reticulation are highlighted by heavier lines

(a) (b)

(c) (d)

Fig. 2. Exactly eight different “gene trees” are induced by the reticulate network N

in Figure 1, and we depict two such trees, T1 in (a) and T2 in (b). In (c) we show a

splits graph SG representing the union of the splits Σ(T1)∪Σ(T2) of the two trees T1

and T2. This graph has two netted components, highlighted by heavy lines, and these

correspond precisely to the two sets of tangled reticulations contained in N . In (d) we

show the reticulate network N ′ reconstructed from SG using the algorithm described

in the text, with reticulation edges highlighted by heavy lines
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definitions of independence were more restrictive by requiring node-disjointness
[5, 8].) Additionally, we call v and v′ tangled, if there exists a chain of reticulation
cycles C = C1, C2, . . . , Ck = C ′ such that Ci and Ci+1 are dependent for each
i = 1, . . . , k − 1. A reticulation that is independent of all other reticulations is
also called a gall [6] and a reticulate network N that contains only galls is called
a galled tree.

A reticulate network N gives rise to a reticulate model of evolution as follows:
Starting at the root, molecular sequences evolve along tree edges in the usual
fashion, experiencing point-mutations along the way [19]. However, the sequence
that arises at a reticulation node v is obtained as a mixture of sequences along
the two reticulation edges p(v) and q(v). The three main biological mechanisms
that may operate here are hybridization, horizontal gene transfer (HGT) and
recombination. In hybridization or HGT, we think of a sequence as consisting
of an unordered set of genes and the net result of an hybridization or HGT
event is a mixture of complementary genes or sites. In the case of recombination
within a population, we consider individual sites ordered along the sequences
and a resulting recombinant sequence is usually obtained by cross-over events,
in which a prefix and a suffix of two ancestor sequences are combined together.

Our definitions capture the essence of the graphs used to describe hybridiza-
tion and HGT scenarios [8], and the underlying graph employed to describe
recombination scenarios [3, 5, 6]. However, the latter possess additional struc-
ture, namely a labeling of the tree edges by mutation sites and a labeling of
the reticulation nodes by cross-over positions, and thus our approach requires
further development before it will be able to fully address the reconstruction of
recombination scenarios.

Throughout this paper we will use the term gene to mean a segment of
sequence that is atomic with respect to the mechanism of reticulate evolution
in operation. Hence, the evolutionary history of any given gene will be a single
phylogenetic tree T ∈ T (N) [20].

3 Splits, Incompatibility and Splits Graphs

Suppose we are given a set of taxa X. A split (or, more precisely, X-split) is a
bipartitioning of X into two non-empty sets A and B, denoted by S = A

B (= B
A ).

For a given X-tree T , deletion of any single edge e will produce a graph with
exactly two connected components and this defines a split σT (e) = A

B , given
by the two sets of taxa labeling the two components [12]. The set of all splits
obtainable in this way is called the splits encoding Σ(T ) of T . For a given set H
of X-trees, we define Σ(H) =

⋃
T∈H Σ(T ).

Two X-splits S = A
B and S′ = A′

B′ are called compatible, if one of the four
possible intersections A ∩ A′, A ∩ B′, B ∩ A′ and B ∩ B′ is empty. A set of X-
splits Σ is called compatible, if all pairs of splits in Σ are compatible. The
incompatibility graph IG(Σ) = (V,E) has node set V = Σ and edge set E ⊆(
V
2

)
, in which any two nodes S and S′ are connected, if and only if they are

incompatible.
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It is a well-known result that a set of X-splits Σ is pairwise compatible, if and
only if there exists a unique X-tree T with Σ = Σ(T ). In this case we say that
T represents Σ. Moreover, an arbitrary set of splits Σ, not necessarily compati-
ble, can also be represented by a graph. Such a splits graph SG(Σ) consists of a
connected graph (V,E) together with a node labeling ν : X → V and an edge col-
oring σ : Σ → E, whose essential property is that deleting all edges colored by a
given split S = A

B ∈ Σ will produce precisely two connected components, labeled
by A and B, respectively, see [13] for details. (This splits graph is not uniquely
defined, however we will refer to it as the splits graph SG(Σ) representing Σ,
as the differences are inconsequential.) For example, the splits graph depicted in
Figure 2 (c) represents the union of the split encodings of the two trees shown in
Figure 2 (a–b).

Suppose we are given a set of splits Σ. A netted component Z of SG(Σ) is
a maximum set of nodes such that any two nodes v, w ∈ Z are connected by
two different node-disjoint paths in SG(Σ) (in graph-theoretic terminology, a 2-
connected component). The splits graph depicted in Figure 2 (c) has two netted
components, each highlighted by heavy lines. Any node v that is contained in
some netted component Z and is labeled, or is incident to an edge that is not
contained in Z, is called a gate node. For example, in Figure 2(c), the left-hand
netted component has precisely five gate nodes and the right-hand one has seven.

It is a simple observation that any two splits S, S′ ∈ Σ are incompatible, if
any only if the edges representing S and S′ are contained in the same netted
component [12]. More precisely:

Lemma 1. Suppose we are given a set of X-splits Σ. There exists a one-to-one
correspondence between the netted components of the splits graph SG(Σ) and the
non-trivial connected components of the incompatibility graph IG(Σ).

4 Parsimonious Reconstruction Problem

An X-tree T ′ is called a refinement of an X-tree T , if Σ(T ) ⊆ Σ(T ′), that is, if
T ′ = T or if T can be obtained by contracting some edges of T ′. Given a (usually
unknown) reticulate network N . We say that a set of trees H was sampled from
N , or that N supports H, if each tree T ∈ H possesses a refinement T ′ ∈ T (N).
Similarly, we say that a set of splits Σ′ was sampled from N , or that N supports
Σ′, if Σ′ ⊆

⋃
T∈T (N) Σ(T ).

In molecular evolution we are interested in the following problem: Given
a collection of gene trees that have evolved from a common ancestor under a
reticulate model of evolution, reconstruct the underlying reticulate network. We
address this as follows:

Problem 1. Parsimonious Reticulate Network from Gene Trees Problem: Given
a set of X-trees H. Construct a reticulate network N that supports H and con-
tains a minimal number of reticulations.
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This is a purely combinatorial problem. It is easy to see that a solution always
exists [21]. In practice a key issue is how to obtain a collection of sufficiently
accurate gene trees that contain all edges necessary to be able to detect the
reticulations in the underlying network. A second key issue is that, even if we
can construct such a network N , it is not certain that a reticulation node v was
indeed caused by a hybridization event, as we discuss in Section 8.

Problem 1 in its most general form is known to be computationally in-
tractable [5]. The following simpler version of the problem is tractable and dif-
ferent solutions have been proposed [20, 8, 6, 7]:

Problem 2. Parsimonious Independent Reticulate Network from Gene Trees
Problem: Given a set of X-trees H. Construct a reticulate network N containing
only independent reticulations that supports H and contains a minimal number
of reticulations, if one exists.

This problem is a special case of the following more general problem. Let N
be a reticulate network. We say that two reticulation nodes v and v′ overlap, if
they possess tree cycles C and C ′, respectively, that intersect “nicely”, that is,
whose backbones B and B′ overlap either in prefixes or suffixes of each other,
or for which one backbone is contained in the other.

Problem 3. Parsimonious Overlapping Reticulate Network from Gene Trees
Problem: Given a set of X-trees H. Construct a reticulate network N containing
only independent or overlapping reticulations that supports H and contains a
minimal number of reticulations, if one exists.

One of our main results is that this problem is computationally tractable, if
we limit the maximum number of reticulations contained in any given tangle,
and we present an algorithm to solve it in Section 6.

5 The Decomposition Theorem

Suppose that N = (V,E, ν) is a reticulate network. We define Σ(N) :=
⋃

T∈T (N)

Σ(T ), and for any edge e ∈ E, we take Σ(e) := {σT (e) | e is edge of T ∈
T (N)} ⊆ Σ(N) to be the set of all splits generated by e in trees induced
by N .

There is a close relationship between reticulate networks and splits graphs.
More precisely, there exists a one-to-one relationship between the tangles of a
reticulate network N , the connected components of the incompatibility graph
IG(Σ(N)) and the netted components of the splits graph SG(Σ(N)). This is
implied by the following result:

Theorem 1. [Decomposition Theorem] Suppose N is a reticulate network. Two
tree edges e, f ∈ ET are contained in a cycle in N , if and only if there exist
two splits S ∈ Σ(e) and S′ ∈ Σ(f) that are contained in the same connected
component of the incompatibility graph IG(Σ(N)).



240 D.H. Huson et al.

Similar results, using different definitions, interpretations and proofs, are re-
ported in [11, 14]1.

To formulate our proof, we first introduce some additional definitions and
results. Suppose that N is a reticulate network and C is a path or cycle in N .
We say that C fully contains a reticulation v ∈ VR, if C contains both p(v)
and q(v) (consecutively, of course), and we use s(C) to denote the number of
reticulations fully contained in C.

Lemma 2. For every cycle C in a reticulate network N we have s(C) ≥ 1.

Proof: Direct all edges away from the root of N . The edges of C cannot all be
oriented in the same direction and thus there must exist two consecutive edges
e1 and e2 in C that are oriented toward their common vertex v. By definition of
N , we must have v ∈ VR and {p(v), q(v)} = {e1, e2}, and thus s(C) ≥ 1. �

Lemma 3. Consider a reticulate network N . If e, f ∈ ET are two different tree
edges contained in a common cycle C with s(C) = 1, then there exist two splits
S ∈ Σ(e) and S′ ∈ Σ(f) that are incompatible.

Proof: Consider two edges e, f ∈ ET and assume they are both part of a cycle C
that contains precisely one reticulation v ∈ VR for which both p(v) and q(v) are
edges in C. Then there exist two trees Tp ∈ T (N) and Tq ∈ T (N) that contain
all edges of C except for q(v) and p(v), respectively, and differ only by these
two edges. Assume that C = (e0 = p(v), w1 = v, e1 = q(v), w2, . . . , wα, eα =
e, wα+1, . . . , wβ , eβ = f, wβ+1, . . . , wk) for appropriate α, β. For any node u in
C, let Vu denote the set of all nodes that can be reached in Tp or Tq from a

1 In [14], the input to the problem is a set M of binary sequences of length n that
are assumed to have been generated under the infinite sites model. If we discard
all constant sites, then the set of remaining columns of M is equivalent (up to a
choice of ancestral states) to a set of splits Σ and the definition of an incompatibility
graph in [14] is equivalent to our definition. A phylogenetic network, as defined in [14]
(and perhaps better termed a recombination network), is based on a directed acyclic
graph with a specified root, and certain coalescence and recombination nodes. Such
a network N is considered to explain an input set M , if there exists a labeling of the
leaves by M and a labeling of the internal nodes by additional sequences of length
n, together with a labeling of the edges by columns of M (that is, splits) and a
labeling of the recombination nodes by certain recombination events, such that each
split occurs precisely once and the implied mutations and recombinations give rise to
the specified labeling of the nodes by sequences. Because there is some choice in the
placement of individual splits within such a network, the Decomposition Theorem
in [14] holds only in one direction, namely if two splits are contained in the same
connected component of the incompatibility graph, then there exists a phylogenetic
network such that the corresponding edges are contained in a cycle, but not vice-
versa. In our definition of a reticulate network, we do not explicitly label edges by
splits. Rather, each edge implicitly corresponds to a set of splits that is defined via
the set of trees that can be sampled from the network. This lack of choice explains
why our version of the Decomposition Theoren holds in both directions.
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node u without using any edge in C. Note that all four sets Vv, Vwα
, Vwβ

and
Vwβ+1 must be disjoint, as both Tp and Tq are cycle-free. Let Xu denote the
set of taxa that occur as labels in Vu. The split S = σTp

(e) induced by e in
Tp separates Xv ∪ Xwα

from Xwβ
∪ Xwβ+1 . Similarly, the split S′ = σTq

(f)
induced by f in Tq separates Xwα

∪Xwβ
from Xwβ+1 ∪Xv. Thus, S and S′ are

incompatible. �
Now we prove Theorem 1:

Proof: “⇒”: Suppose we are given a reticulate network N and two different tree
edges e, f ∈ ET that are contained in a cycle C. Orient all edges away from the
root and use g− and g+ to indicate the implied start and end of an edge g ∈ E.
We have two cases, which we both prove by induction:

Case 1: The edges e and f have opposite orientations in C. By Lemma 2 we have
s(C) > 0. If s(C) = 1, then Lemma 3 implies the result. So assume that s(C) =
n > 1 and C = (e−, e, e+, . . . , p(v1), v1, q(v1), w, . . . , f+, f, f−, . . .), where v1 is
the first encountered reticulation that is fully contained in C. By properties (R4–
R5) of N , for any node u there exists a path Pu from the root ρ to u with s(Pu) =
0. Let −Pu denote the reversal of Pu. Construct a cycle C ′ by concatenating Pe+ ,
the section of C that links e+ to w, and −Pwk

. It has s(C ′) = 1. Construct a
second cycle C ′′ by concatenating Pwk

, the section of C that links w to f+, and
−Pf+ . It has s(C ′′) < n. Let f ′ be the edge contained in Pw that is adjacent
to w. This must be a tree edge, because wk ∈ VT . By Lemma 3, there exist
two incompatible splits S ∈ Σ(e) and S′ ∈ Σ(f ′). By induction, there exists a
chain of pairwise incompatible splits from S′ to some split S′′ ∈ Σ(f). Hence,
the claim follows.

Case 2: This is dealt with in the same way, but using slightly different paths.
“⇐”: If e and f are two tree edges not contained in a cycle, then there exists a
cut-edge h (or at least a cut-vertex, which can be refined to provide a cut-edge
h) that separates e and f . The edge h induces the same split S = A

B in every
tree T ∈ T (N). Thus, every split S′ ∈ Σ(N) subdivides either A or B, but not
both sets. This implies the claim. �

6 Algorithms

Suppose we are given a set of gene trees H sampled from a reticulate network N
and would like to solve Problem 3. By Theorem 1 and Lemma 1, we can assume
that N consists of precisely one tangle. We can reduce the problem size further
by assuming that X is Σ-separated, that is, that for every pair of distinct taxa
x, y ∈ X there exists a split S = A

B ∈ Σ(N) with |A ∩ {x, y}| = 1.

Lemma 4. To solve the posed computational problems, it suffices to consider
the reduced case of a collection of X-trees H such that X is Σ-separated and the
incompatibility graph IG(Σ) consists of precisely one connected component, or,
equivalently, the splits graph SG(Σ) consists of exactly one netted component.
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In the following we restrict our attention to the reduced case by virtue of
Lemma 4. Given a taxon set X, we define a reticulation scenario (R,B, I) to
consist of a set of reticulate taxa R ⊂ X and an ordered list of backbone taxa B =
(b1, b2, . . . , bk), so that X equals the disjoint union R∪{b1, . . . , bk}, together with
a mapping I from R to distinct intervals of backbone taxa in (b2, . . . , bk−1). We
require that the outgroup taxon o ∈ X is contained in B, if specified. Moreover,
we set

Σ(R,B, I) =
{

R−(i)∪{b1,...,bi}∪R1(i)
R2(i)∪{bi+1,...,bk}∪R+(i) | i = 1, . . . , k − 1

}

∪
{

R−(i)∪{b1,...,bi}∪R2(i)
R1(i)∪{bi+1,...,bk}∪R+(i) | i = 2, . . . , k

}
,

with

R1(i) ∪ R2(i) is any partitioning of R(i) := {r ∈ R | bi ∈ I(r)} �= ∅,
R−(i) := {r ∈ R | I(r) ⊆ {b1, . . . , bi−1}} ,

and R+(i) := {r ∈ R | I(r) ⊆ {bi+1, . . . , bk}} .

We interpret B = (b1, . . . , bk) as the joint “super-backbone” along which
all overlapping reticulations are arranged. Every taxon r ∈ R corresponds to a
reticulation node and the associated interval I(r) ⊆ B defines precisely which
part of B will form the backbone of the tree cycle associated with r.

Given a reticulation scenario (R,B, I), we can construct a corresponding
reticulate network N(R,B, I) in polynomial time, as follows:

Algorithm 1. Assign a reticulate node v(r) to each reticulate taxon r ∈ R and
a tree node v(b) to each backbone taxon b ∈ B. Additionally, for each consecutive
pair of taxa bi, bi+1 in B, define a tree node v(bi, bi+1), and then connect v(bi) to
v(bi, bi+1), and v(bi, bi+1) to v(bi+1), using tree edges (i = 1, . . . , k−1). Finally,
connect each reticulate node v(r) to the two nodes v(bi, bi+1) and v(bj , bj+1) using
reticulate edges, where i, j are chosen such that I(r) = {bi+1, bi+2, . . . , bj−1}
holds.

By construction we have:

Lemma 5. A reticulation scenario (R,B, I) corresponds to a solution
N(R,B, I) of Problem 3, if and only if H can be sampled from N(R,B, I) and
|R| is minimal.

The following useful observation follows directly from the definition of
Σ(R,B, I):

Lemma 6. Let Σ denote the set of splits in the reduced case. If (R,B, I) corre-
sponds to a solution of Problem 3, then every split S ∈ Σ must separate b1 and
bk, that is, we must have |{b1, bk} ∩ A| = 1 for all S = A

A′ ∈ Σ.

The following polynomial-time algorithm takes as input a set of trees H in
the reduced case and produces as output a minimal reticulation scenario, if it
exists:
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Algorithm 2. Consider all possible subsets R of X of size ≤ k in order of
increasing cardinality, and set B = X \ R. There are O(|X|k) such subsets.
Define Σ|B :=

{
A∩B
A′∩B | A

A′ ∈ Σ
}
\ { ∅

B , B
∅ }. To obtain an ordering of B, first

determine b1 using Lemma 6. Let Σ|B(b1) = {A ∈ S ∈ Σ|B : b1 ∈ A} denote the
set of split parts in Σ|B containing b1. Then, these must be ordered by inclusion
{b1}, {b1, b2}, {b1, b2, b3}, . . . and we thus obtain an ordering b1, b2, . . . of B. To
compute the set I(r) ⊆ B for a given reticulate taxon r ∈ R, determine the set
of all b ∈ B with the property that A∪{b,r}

A′ ∈ Σ|B∪{r} ⇔ A∪{b}
A′∪{r} ∈ Σ|B∪{r}.

Finally, check whether Σ(H) ⊆ Σ(R,B, I) holds.

From this algorithm one can derive the following consequence:

Theorem 2. If the number of tangled reticulations is limited to k, then Prob-
lem 3 is solvable in polynomial time. In particular, Problem 2 is solvable in
polynomial time.

A visualization of a reticulate network N can be obtained using the following
algorithm:

Algorithm 3. Given a set of splits Σ, compute the splits graph IG(Σ) using
[13]. For each component Z of the incompatibility graph IG(Σ), use Algorithm 2
to compute a reticulation scenario for Z. Then, use Algorithm 1 to compute the
topology of the reticulate network N(Z) associated with Z. Let Z ′ denote the
netted component in SG(Σ) associated with Z. Replace Z ′ by N(Z) by first
removing all non-gate nodes and any edge contained in Z and then mapping the
appropriate nodes of N(Z) onto the gate nodes of Z ′.

Although the computation of SG(Σ) can take exponential time for an arbi-
trary split set Σ, for our graph-layout purposes it suffices to compute the splits
graph for a subset of splits chosen in such a way that the associated splits graph
contains no cliques of size greater than 4, say, which can be done in polynomial
time (unpublished result).

7 Implementation and Application

We have implemented the algorithms described in Section 6, and our implemen-
tation is freely available as a plug-in for the program SplitsTree [15]. We thus
provide a robust and flexible tool for biologists to explore real datasets for ev-
idence of reticulate evolution. Given a set of taxa X, the input can be either
a set of X-trees, a set of partial X-trees (that is, a set of X ′-trees for different
subsets of taxa X ′ ⊆ X) or a set of X-splits. In the context of investigating gene
trees, it is seldom the case that all trees are full X-trees and so the capability to
process partial trees is of particular importance. We achieve this in practice by
first applying the Z-closure method [22] to a given set of partial trees to obtain
a set of full X-splits.

An important aspect of our implementation is that we provide a visualization
of the computed reticulate network. It is based on an algorithm for construct-
ing splits graphs [13] and provides a useful visualization of the complete input
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(a) (b)

(c) (d)

Fig. 3. In (a) and (b) we show two gene trees for 46 buttercups, based on the chloroplast

JSA region and nuclear ITS gene [16]. In (c) we show the splits graph of all splits of

both trees. Removal of one taxon (R.scrithalis) and five interfering splits leads to a

configuration that is recognized by our algorithm as a reticulation that gives rise to

R.nivicola, as shown in (d)

data. Netted regions of the graph that can be explained by a set of overlapping
reticulations are drawn as such and the others remain netted, see Figure 2(c–d).

In Figure 3(a–b) we depict two different gene trees for New Zealand alpine
Ranunculus (buttercup) species based on the nuclear ITS gene and the chloro-
plast JSA region [16]. The splits graph in Figure 3(c) suggests that R.nivicola
may be a hybrid between the evolutionary lineages on the left- and right-hand
side of the splits graph. However, our algorithm fails to explain the netted region
by a collection of overlapping reticulations. This failure is due to additional in-
compatible splits in both the left- and right-hand side of the graph that extend
into the netted component containing R.nivicola. Additionally, the placement of
R.scrithalis is problematic. Interactive deletion of one split on the right-hand side
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and four splits on the left-hand side, and removal of R.scrithalis, leads to a sim-
plified netted component that had a detectable reticulation that may correspond
to a hybridization event, Figure 3(d). For this specific case, studies of morpho-
logical variation and chromosome numbers had earlier suggested that R.nivicola
was an allopolyploid (hybrid) formed between R.insignis and R.verticillatus [16].

8 A Statistical Test for Reticulate Evolution

The mere incompatibility of gene trees does not necessarily constitute evidence
for reticulate evolution, as gene phylogenies may conflict by (at least) three
other processes: firstly, the gene trees may not be historically accurate due to (i)
model misspecification or inappropriate methodology, or due to (ii) sampling ef-
fects (insufficient sites to compensate for site saturation or short interior edges);
alternatively the gene phylogenies may be historically correct but differ from the
species tree due to (iii) the population-genetic effect known as lineage sorting
[20, 23, 24]. One scenario that could easily be mistaken for reticulation under
process (i) is the following. Suppose the evolutionary history of the taxa is accu-
rately described by a tree T (i.e. no reticulate evolution occurred) and this tree
describes the history of gene 1 and gene 2 (so there is no lineage sorting effect
for these two genes). Suppose further that two taxa x and y that are widely sep-
arated in T have independently acquired a strong compositional bias (such as
increased GC richness). Then most tree reconstruction methods will reconstruct
a phylogeny for gene 2 that is different to T (grouping taxa x and y as sister
taxa) but which together with the (correct) tree for gene 1 would be explained
by a single reticulation event - namely that taxon x (or y) was a hybrid. In this
case one can test the null hypothesis that the two trees differ simply due to com-
positional variation, against the alternative of genuine reticulation, by adapting
the statistical test described by [25].

Lineage sorting (process (iii)) can also be distinguished from reticulation,
either by a parametric approach based on divergence time estimates [24], or by
a non-parametric approach when the number of gene trees is large. This non-
parametric procedure can also allow sampling effects (process (ii)) as well as, or
in place of, lineage sorting - provided the substitution process follows a molecular
clock. To illustrate this approach – for a sequence of gene trees (g1, g2, . . . , gk)–
suppose we have just three taxa a, b, c and a hypothesized rooted species tree
(ab)c. If n1 of these gene trees support (ac)b and n2 of them support (bc)a, let
m = n1 + n2, and consider the test statistic

∆ := |n1 − n2|.

We describe how one can use ∆ to test the null hypothesis Ho that (ab)c is the
species tree and that the underlying process that resulted in the m other trees
is independent occurrences of lineage sorting (or sampling effects subject to a
molecular clock) against the alternative hypothesis H1 that there has also been
a reticulation event involving the transfer of some genes from one lineages in
the past across to another. Let I := {i : gi supports (ac)b or (bc)a} so we can
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write ∆ = |
∑

i∈I δi| where δi = 1 (resp. −1) if gene gi supports tree (ac)b (resp.
tree (bc)a). We will regard the δi values as realizations of a sequence of m in-
dependent outcomes D1, . . . , Dm that take values in {1,−1} (i.e. lineage sorting
or sampling effects that change the tree structure are assume to be independent
from gene to gene). Then under Ho, E[Di] = 0 since when a lineage sorting
event occurs that results in a gene tree at variance with the species tree, then
that gene tree is equally likely to be either of two alternative trees (this follows
from population-genetic considerations [26, 23]), while for sampling effects sub-
ject to a molecular clock E[Di] = 0 also holds by symmetry. In contrast, under
H1 we would expect E[Di] to be systematically negative or positive depending
(respectively) on whether (ac)b or (bc)a is the other dominant gene tree involved
in the reticulation. Furthermore, |∆ − ∆′| ≤ 2 if ∆ and ∆′ differ on just value
of i ∈ I. Thus, regarding ∆ as a function of m independent random variables
(D1, . . . , Dm) we can apply the Azuma-Hoeffding inequality [27] to deduce that
under Ho,

P[∆ ≥ a] ≤ 2 exp(−a2/8m).

This allows us to use ∆ as a test statistic to test Ho against H1. As an example,
suppose we find that n1 = 60, n2 = 10. Then ∆(g) = 60− 10 = 50, and m = 70,
so P[∆ ≥ 50] ≤ 2 exp(−502/8 ·70) = 0.023, and consequently we could reject Ho

at the 5% significance level.
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Appendix

The examples shown in this paper are based on gene trees, and Figures 2–3
were generated using our software. As stated in Section 7, our implementation
can also process other types of input, for example binary sequences representing
haplotype data. We illustrate this using the data presented in [11], which was
reportedly taken from the alcohol dehydrogenase locus from 11 chromosomes of
Drosophila melanogaster [17]. This data consists of a reduced set of 9 haplotypes
typed at 16 sites:
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

a 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0

b 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0

c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

d 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0

e 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 1

f 0 1 0 0 0 1 0 0 0 1 0 1 0 1 1 1

g 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1

h 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1

i 1 1 1 1 0 1 0 0 1 1 1 1 1 1 0 1

Each column of this matrix defines a split of the taxon set X = {a, b, . . . , i}
and let Σ denote the set of all such splits. This data can be entered directly
into the SplitsTree program. The resulting splits graph SG(Σ) is shown in Fig-
ure 4(a) (with all trivial splits added for clarity). This figure indicates that the
configuration of splits is quite complex and, as a consequence, our algorithms
fail to detect a reticulate network for this data.

(a) (b)

(c) (d)

Fig. 4. In (a) we show the splits graph associated with the full sixteen columns of

haplotype data taken from [11]. In (b), we show the splits graph for the four columns

{1, 4, 5, 6}. It consists of two cycles with one reticulation per cycle. In (c), we show

the splits graph for 14 columns of the data, with columns 2 and 4 removed. In (d),

we show the reticulate network computed from this reduced data set, involving two

reticulations, with reticulation edges highlighted by heavy lines
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Our implementation allows one to easily add or remove sites from the analysis.
In Figure 4(b), we show the splits graph for the subset of sites {1, 4, 5, 6}. It
contains two netted components. In this case, the graph topology alone does
not determine which nodes are to be interpreted as reticulation nodes. Declaring
one of the taxa to be an outgroup will reduce the number of possible choices of
reticulate nodes, but even then there will still be more than one choice.

Let Σ′ denote the 14 splits that remain after removing sites 2 and 4. We show
the resulting splits graph SG(Σ′) in Figure 4(c). Application of Algorithm 3
to this reduced set of splits Σ′ results in the detection of a solution involving
precisely two overlapping reticulations, as shown in Figure 4(d).

Inspection of the sequences reveals that the reticulation displayed at sequence
e can be interpreted as a recombination, as e can be obtained from sequences
d and h via combination of the first seven (or five, not counting sites 2 and 4)
positions of h and the last nine positions of d, with only one mutation in either
area. However, it is not possible to obtain sequence f from c and g via a single
cross-over and a small number of mutations.


	Introduction
	Phylogenetic Trees and Reticulate Networks
	Splits, Incompatibility and Splits Graphs
	Parsimonious Reconstruction Problem
	The Decomposition Theorem
	Algorithms
	Implementation and Application
	A Statistical Test for Reticulate Evolution

