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Abstract

Trees with positively weighted edges induce a natural metric on any subset of vertices, how-
ever not every metric is representable in this way. A problem arising in areas of classification,
particularly in evolutionary biology, is how to approximate an arbitrary distance function by such
a tree metric, and thereby estimate the underlying tree that generated the data. Such transfor-
mations, from distances to tree metrics (and thereby to edge-weighted trees) should have some
basic properties such as continuity, but this is lacking in several popular methods, for example
(as we show) in “neighbor joining.” However, a continuous transformation, due to Buneman,
frequently leads to uninteresting trees. We show how Buneman’s construction can be refined so
as to lead to more informative trees without sacrificing continuity, and we provide two simple
examples of its use. We also provide a sufficient condition for both the Buneman construction,
and its refinement to correctly recover the underlying tree. © 1999 Elsevier Science B.V. All
rights reserved.

AMS classification: 05C05, 92B10
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1. Introduction

A distance function d on a finite set S is said to be a tree metric if there
exists a tree T = (V,E), amap L : § — V, called a labelling, and a map w
E — R, called an edge weighting, such that for all x,y € S, dy, is the sum of w(e)
over all edges e in the unique path in 7 connecting vertices L(x) and L(y). Thus, a
tree metric d is a pseudo-metric (with d,, = 0 precisely when L(x) = L(y)).

We may assume that the tree T has no vertices in V' — L(S) of degree less than or
equal to two, since, as is easily seen, any tree metric on S can be realized by such a
tree with a suitable edge weighting. We call such a tree T (together with its associated
labelling L) an S-tree.
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S-trees and tree metrics arise in many contexts, particularly in phylogenetic analysis
in evolutionary biology (see, for example, [3, 14]).

One classical and simple result is that a tree metric can arise from only one triple
(T,L,w) where T is an S-tree, and w is an edge weighting of T [2, 8, 18, 20]. Thus
tree metrics are in a natural bijective correspondence with positively edge-weighted
S-trees, and, furthermore, there exist fast algorithms for recovering the triple (7,L,w)
from d (see, for example, [2, 3, 13]). We refer to 7' (with its associated labelling L)
as the S-tree associated with d.

An important problem in applications (such as in biology) is how to take an arbitrary
distance function, which is in some sense an estimate of (but not itself) a tree metric,
and recover a“nearby” tree metric, and thereby the associated (edge weighted) S-tree.
As Buneman [8] pointed out, it is desirable that such a map, from distance functions
onto tree metrics, should be continuous. That is, a small change in the input distance
function should not result in a drastically different edge-weighted tree. This is important
for applications where distances are merely estimates obtained from imperfect data,
often subject to stochastic effects (in biology, random mutations in DNA sequences).
Surprisingly, one of the most popular methods currently in use in phylogenetic analysis
— neighbor joining — fails on this count, as we show below in Section 4.2. Some earlier
methods which attempt to find a closest tree metric to a given distance function are
also discontinuous.

This prompted Buneman [8] to construct a continous map from metrics onto tree
metrics, which we recall in Section 4. Buneman (and others subsequently, see [4]) have
noticed that such a map applied to real data (particularly when S is large) often leads
to highly unresolved “star-like” trees, with few internal edges. Such trees tell a biolo-
gist little about the underlying evolutionary relationships. This has led to a preference
by practitioners for other (discontinuous) methods as these methods generally construct
fully resolved trees, which therefore appear to provide more information about the un-
derlying evolutionary history. Yet, as pointed out in [8], such methods will construct
fully resolved trees even if fed completely random data. In this case the evolutionary
“information” contained in the tree is completely phantom, and liable to change com-
pletely under a small perturbation. Buneman suggests that the non-resolution observed
in his tree building method is “the price paid for continuit\y”.

One escape from this dilemma has been to modify Buneman’s construction so as to
output a graph, rather than necessarily a tree, via the elegant split decomposition theory
of Bandelt and Dress [4]. Here we adopt a slightly different approach — by modifying
Buneman’s construction in an alternative way (see Section 5) we are able to ensure
that the output is always a tree, but it will, in general, give a more highly resolved
output tree than Buneman’s method. This opens up the possibility of constructing still
further maps, aimed at extracting as much “tree-like” information from the data as
possible, without sacrificing continuity.

Of course any map from distance functions to tree metrics should also have the
property that when applied to a distance function d which is already a tree metric it
returns d. Two further desirable properties are homogeneity and equivariance which we
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describe below. We call any continuous map which satisfies these last three properties
a good map.

Before discussing Buneman’s good map and its refinement, we first describe, in
the following section, two underlying metric structures on the space of tree metrics,
and the relationship between them (Theorem 2.1). In Section 3 we define retractions
and good maps, while in Section 4 we describe Buneman’s good map, and other
related constructions, along with a proof that the commonly used neighbor-joining
method is not a retraction. In Section 5 we describe and establish the claimed properties
of our proposed refinement of Buneman’s map. Towards the end of this section we
provide a “minimal edge” analysis of both the classic and refined Buneman map, which
complements a similar result obtained for the neighbor-joining method in [1]. Section
5 concludes by providing two simple examples of the use of the refined Buneman
map, including an application to biological data. Section 6 summarizes the paper, and
addresses some remaining questions.

2. Tree metrics and edge-weighted S-trees

Let S :={1,...,n}, and define
G(S):={d:SxS > Rsg:dyy=dy,dy=0foralxyecS}

to be the set of distance functions on S. Endow 2(S) with the /” norm, that is, set

1/p
dij — dl;|P =1,2,...
Hd_d/”p: <;| ] j| ) p

max |dy; — )] p = oc.

Let 7(S) be the subspace of () consisting of tree metrics, and #(S) be the set of
splits of S, that is, bipartitions of S. Note that each edge of an S-tree induces a split
of S defined by the two non-empty subsets of S that label the two subtrees of 7" when
e is deleted. We say that this split is a split of T and is associated to edge e. Notice
also that any tree metric d € 7 (S) can be conveniently written in the form

d= Y i (D

cES(S)
where
. w(e) if ¢ is associated to e,
Ae = A(d) = . . .
0 if ¢ is not associated to any edge of T,
and where

1 if o separates i and j,
0 otherwise

0q(iyj) i= {
(o = {A4,B} separates i and j if i # j, and |{i,j} N 4| = 1).
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Let A(d) be the vector [1,(d)] which lies in RI¥©),
W(S) = {Ad) : d e T(S)),

and endow #(S) C RI¥®) with the /” norm. In the next section we define some maps
from &(S) to R, called indices, in order to prove that the map

At T(S) = W(S)d — Ad)

is a homeomorphism.
2.1. Indices

Given d € 2(S) several useful maps (indices) from (S) into R can be defined.
We review these here, adopting the convenient shorthand xy for d,,. Suppose that
o0 = {4,B} is a split of S. Let

1 / /
Lo = U(d): —2aa€Abb {min{ab + a'b’,ab’ + a'b} — (ad’ + bb")},
lua = I’ta' (d) = max{o ﬂo’}
_ ._l : Ty / ’ ’
ty = ag(d) = 5 a’a/en;llit’lb(EB{maX{ab +d'b',ab’ + a'b} — (ad’ + bb')},

ot = ol (d) := max{0, 0, }.

The map u is the Buneman index [8], while o is the isolation index [4]. Clearly, for
any g € #(S), we have u, <o, and uf <of. The proof of the following lemma can
be found in [4, §].

Lemma 2.1. If d is an element of T(S) with d =" _ A;04, then o = uf = af for
all ¢ € #(S).

2.2. I(S) and #(S) are homeomorphic

P

The /' norm on the the space #(S) was proposed in [17] as a natural metric for
comparing edge-weighted trees. The following theorem shows that #7°(S) and 7 (S)
are homeomorphic. In particular the question of whether or not a map of Z(S) into
F(S) is good does not depend on whether we view the output as a distance function
or as an edge-weighted S-tree.

Theorem 2.1. For d,d’ € 7 (S), we have

Id — d'lloc < [I4(d) — A@)]1,
[12(d) = Md)|oo < 2[|d — d'| oo,

and both of these inequalities can be equalities for any S.

FUNBEED W S . .- S ¢ ~=
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Proof. Writing d,d’ in the form of Eq. (1) we have
|d —d'|lc = H}?XIdU - dj|

= TT;?]!XI Z (A — 2553, )|

{oeL(S)}
< max Z Ma - Mrléa(i,j)
Y (eesis))
< Ag — A (i, ]
D o= A max{de(i, )}
{o€SL(S)}

= |A(d) = 2(d)]1-

The second inequality in Theorem 2.1 is established in [I1]. This completes the
proof. O

To see that the inequalities can both be equalities we give the following two exam-
ples.

For the first inequality let d be the tree metric induced by the S-tree given by
labelling bijectively the degree one vertices of a star tree (a tree having just one vertex
of degree larger than 1) by the elements of S, and assigning weight o to each edge.
Let d’ be defined in the same way, except that we assign one of the edges weight
instead of a. Then we immediately see that

ld = d'lloo = [12(d) — Ad)||s = |~ .

For the second inequality, take a tree with four leaves, labelled bijectively by S, and
with five edges. Let d be the metric on S induced by assigning weight 2 to all five
edges; let d’ be the metric on S induced by assigning weight 1 to the central edge and
9/4 to the other four edges. Then,

1(d) = Hdloo = 1 = 2]ld — || .

This completes the proof.

Corollary 2.1. The map /. : T(S§) — #(S);d — Ad) is a homeomorphism.

2.3. o-hyperbolicity
Given d € 2(S) and 6>0, d is said to be d-hyperbolic if

dij +duy<max{dy +dj,dy+dy}+9

for all i,j,k,I € S. This is a relaxation of the four-point condition, in which 6 = 0
(for a discussion of this point see [10]). A classical result states that a pseudo-metric
d is contained in 7 (S) if and only if 4 is O-hyperbolic, a result dating back to the
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1960s and work by the Russians Zaretsky [20] and Smolensky [18] (see also [2, &]).
More generally, a result originally given in [12], and which is also described in [6],
states that if d is 6-hyperbolic, then there exists a d’ € 7 (S) with :

ld = d'[]oc <(1 + log, n)5,

where n = |S|. Thus, if J is small, then d is close to a tree metric up to a term that
grows slowly in .

If d € Z(S) is §-hyperbolic, then we can relate § with the Buneman and isolation
indices in the following way, which we shall use later.

Lemma 2.2. If the metric d on S is d-hyperbolic, and ¢ € S (S) then 2, > /2
implies that pi; > 0.

Proof. For o = {4, B}, write

He = %(mln{P5 Q} _R)’

where P = ab’ +a’b, Q = ab+ a'b’, and R = ad’ + bb’, for suitably chosen a,a’ € 4,
and b,b’ € B. Then

o < 3(max{P,Q} — R),
and so, if %, > 0/2, then
maX{P, Q} -R > V(Pa QaR)a (2)

where v(P,Q,R) is the difference between the largest and second largest value in the
triple P,Q,R. Since v(P,Q,R)>0, Eq. (2) implies that either P or Q is at least R,
and, without loss of generality, we may assume that P >R. But then Q >R also, for if
P>=R > Q, then from Eq. (2)

P—R > P—R,

which is a contradiction.
Thus, we may assume that either P> Q =R, or Q=P >R. In the former case Eq. (2)
gives the following implications:

P—-R>P-0=0Q0—-R>0
=min{P,0} —R >0
= 1; > 0,

and in the latter case, an analogous argument applies to show that p; > 0, thereby
completing the proof. [J
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3. Retractions

A map ¢ : 2(S) — Z(S) is a retraction onto J (§) if
(1) ¢ is continuous,
(i) @(d) e 7(S) for all d € 2(S), and
(iii) @(d) =d for all d € T(S).
Furthermore, if such a retraction ¢ is homogeneous, that is, if

@(id) = Ap(d)

for all 2 > 0 and d € 2(S), and if ¢ is equivariant, that is, for all T € ) . (the
permutation group on .S)

o(d") = p(d)’,
where

(d%)ij = dxtireis

then we say that ¢ is good. These last two properties are desirable in applications in
requiring the method to be independent of the units in which d is measured and the
names given to the objects in S, respectively [15, 19].

Regarding homogeneity, we note that in biological applications distance functions are
frequently transformed by non-linear (typically logarithmic) functions before being used
to reconstruct trees. Clearly such functions are not homogeneous, so the requirement
of homogeneity is meant to apply simply to the transformed distances, not to the
input distances. Homogeneity is desirable for applications to transformed distances as
these distances generally estimate the expected number of mutations that have occurred
between pairs of species for sequences that have been undergoing site mutations at some
rate over a period of time (see [14]) — homogeneity thus becomes the requirement that
the edge weights on the output trees should be proportional to the expected number of
mutations on that edge (and so proportional to time, in case the rate is constant).

Define a partial order on the set of retractions as follows. Given two retractions
@1, ¢z of Z(S) onto 7 (S), and a metric d € Z(S), let

pld)y= Y M(d)sy i=12
cgEYL(S)

We say that @, refines @y, written @; < @2, if and only if for all 4 € Z(S) we have
INd)<IXa), |

for all ¢ € #(S). As can be easily verified, < is a partial order. Note that if ¢ < @2,
and if Ty, 7T, are the S-trees associated with ¢1(d), @2(d), respectively, then 7 is a
refinement of Ty, in the sense that 7} can be obtained from 75 by collapsing a (possibly
empty) subset of edges; also the weights on the edges of 7| are less than or equal to
those on T, — thus if we regard 71,7, as edge-weighted trees then 7 is obtained by
shrinking (and sometimes collapsing) certain edges of I>.

Pal TR . - -
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4. Examples of retractions
4.1. The Buneman retraction

Two splits 0 = {4,B}, ¢ = {4',B'} in ¥(S) are said to be compatible if at least
one of the intersections A N A", ANB, BNA', BNB' is empty. If two splits 7,0’
are not compatible then we say that they are incompatible, and denote this by writing
o L ¢'. Clearly any S-tree gives a set of pairwise compatible splits: just take the set
of splits induced by the set of edges of the tree. Moreover in [8] it is shown that a
set of pairwise compatible splits gives rise to a unique tree.

The following lemma (not stated explicitly in [8]), gives the fundamental link be-
tween the Buneman index and the notion of compatibility of splits.

Lemma 4.1. If 0,6’ € #(S) and o L ¢’ then

Ho + o <O.

Proof. The proof of this result is essentially the same as that for Theorem 5.1 which
we give later. O

Corollary 4.1 (Buneman [8]). The set {c: ps > 0} is a pairwise compatible collec-
tion of splits, and thus gives rise to a unique S-tree.

The index u is the basis for the following good map, which is given in [8]. We
define the Buneman retraction op : 2(S) — J(§) by setting

op(d) = Z HoOg

{o:u,>0}

= Z l’t:éd'

FES(S)

By the previous corollary and the properties of the Buneman index u, ¢z is a good
map. In addition, from [8], ¢z(d)<d, in the sense that

@p(d);j<d; forallijecs.
4.2. Neighbor joining is not a retraction

The neighbor joining method (NJ) is a popular scheme for building up an S-tree
(T,L,w) whose induced metric approximates an input distance d. In this section we
show that neighbor joining is not continuous, and hence not a retraction.

We first review the NJ method [14, p. 488]. For each i € §, let r; = Ekes di, select
a pair {i,j} to minimize

(ri + 1))

M; =d; n=2)’
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where n = |S|, and let d’ be the distance function defined on
§" = (S = {i,jH U {u}
by setting
d,’cy =d,, ifxy#u,
dye = %(dix +dy —dy), xFu,
and
d =0.

uu

" Let (T',L',w") be the edge weighted tree constructed on S’ for d’. Then, on S, let 7
be the tree obtained from 7’ by making leaves i and j adjacent to leaf u using new
edges e;,e; and extending the domain of w' to these two new edges by setting

oy e 1g. 4 T =70
w(e;) = 5d; + 2 =2)
and
w(e;) = dij — w'(e).

Consider the weighted graph metric on the set {1,...,4} given in Fig. 1. The dis-
continuity in NJ arises as x tends to 1 from above and below. In the former case we
obtain the tree in Fig. 1 with an internal edge weight of % (not 0!). In the latter case,
as x tends to 1 from below, we obtain a tree with 1 and 3 on the same side of the
central edge (since then M3 = M>4 is minimal). Thus the induced tree metrics are
different as x — 14 and x — 1—, and hence we have a discontinuity. Finally, note
that when x = 1 the S-tree obtained by neighbor joining depends upon the order in
which the elements of {1,...,4} are chosen.

4.3. Retractions based on the isolation index

For applications to data (particularly when » is large) there are typically few (non-
trivial) splits with positive Buneman measure, and so ¢p often produces highly unre-
solved trees. By contrast, the isolation index is typically positive on a much larger set
of splits, however these are generally not pairwise compatible and so do not correspond
to a tree. Thus the continuous map ¢; : 2(S) — 2(S) defined by setting

er(d) =) atd,,

while fixing 7 (S), does not map 2(S) into 7 (S), but rather into a larger subspace
of 2(S) — for details see [4]. In order to obtain a good map using the isolation index,
one might instead take some continuous function f : 2(S) — R and set

or(d) =Y max{0,a,(d) — f(d)}5,.

cEH(S)

The proof of the following lemma is straight forward, and is left to the reader.

*\____J’:’a - . .. e -
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Fig. 1. An example where NJ is not continuous.

Lemma 4.2. The map ¢, is a good map, provided that

(i) f is homogeneous and Xs-invariant (ie. f(d°)= f(d), for all v € Zs),
(i) f is identically zero on T (S), and
(ili) {o: ax(d) > f(d)} is pairwise compatible.

An example of such a function f is given by f(d) = %hyp(d), where hyp(d) is
the smallest value of & such that d is J-hyperbolic in the sense described in Section
2.3. Then conditions (i) and (ii) of Lemma 4.2 clearly hold, and condition (iii) holds
by Lemma 2.2 and Corollary 4.1. However, Lemma 2.2 also shows that choosing
f(d) = %hyp(d ) leads to a no more refined tree than that given by the Buneman
retraction. ,

Alternatively, we might let f(d) be the smallest non-negative real number 4 for
which the set

{6 € #(S) : as(d) > h}

is pairwise compatible. Then we have the following:
Proposition 4.1. The map ¢ is a good map.

Proof. We check the three conditions in Lemma 4.2. The map f is clearly homoge-
neous and s-invariant, so (i) holds. If d € 7 (S), then

{6 € #(S): %, > 0}
is the set of splits of the S-tree that realizes d, and so is pairwise compatible. Thus

f(d) =0, and (ii) holds. Condition (iii) holds by the definition of f.

In general @, may not necessarily be more refined than, or even comparable with
the Buneman tree. Thus, rather than pursuing this approach here, we turn instead to an
alternative approach which guarantees a tree at least as refined as the Buneman tree.

7.-—-—1* R
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5. Refining the Buneman retraction

In this section we define a new index map 7, which refines the Buneman index,
in the sense that fi, >y, for all ¢ € ¥(S), with strict inequality holding for certain
cases. We assume throughout this section that n>4.

For a resolved quartet, ¢ := ab|cd, of elements a,b,c,d € S, let

By = %(min{ac +bd,ad + be} — (ab + cd)).
Thus, given a split ¢ = {4,B} of S, the Buneman index of ¢ is given by

Ho = a,a’el’/l:tl,ll{]b/el?{ﬁaarlbb,}.

Let Q be the set of quartets ¢ = aa’|bb’ consisting of all unordered choices of a,a’ € 4,
and b,b’ € B, insisting, furthermore, that if |4|>2, then a # &’ and if |B|>2, then
b #b'. As we shall see, |Q] is greater than or equal to n — 3. Now let g1,...,9)9 be
an ordering of the elements in Q such that f, <f,, for all 1<i<;j<|Q|, and define
the refined Buneman index by

1 n—3
luﬂ = 71—3 ; ﬂq,-‘

Note that, by definition, i, > s for all o € Z(S).

5.1. The refined Buneman index gives trees

To show that the refined Buneman index give us trees in a similar way to the
Buneman index, we prove the following analogue of Lemma 4.1.

Theorem 5.1. If 0,6’ € ¥(S) and o L ¢’ then
ﬁo‘ + ﬁ(i' <O
We prove Theorem 5.1 in two steps, the first of which we state as a lemma.

Lemma 5.1. Suppose that ¢ = {4,B}, ¢’ = {4',B'}, and that ¢ | o¢'. Let x :=
[ANA'), y:=|4NB'|, z:=|BNB| and w:= |4' N B|. Then :

xywz=n — 3.
Proof. Clearly,

x+y =,
and

w+z=|B|,

et W . - C - —
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and hence f(x,w) := xwyz = x(J4| —x)w(|B]—w). We want to minimize f(x,w) where
0 <x< 4,0 <w< |B], xx,w € N, and |4],|B|>2 (this last pair of inequalities
arise since o L ¢’). Using routine calculus, one can see that the minimum value of f
under these constraints is equal to (]4| — 1)(|B| — 1). Furthermore, since |4| + |B| = n,
and |A|,|B| =2 we have (|4| — 1)(|B| — 1)=n — 3, which completes the proof. [I

Proof of Theorem 5.1. For a split 6 = {C,D}, let

€(6):={cc'|dd" : ¢, € C,c# ¢/, and d,d' € D,d #d'}.
Suppose that ¢ = {4,B}, ¢/ = {4’,B'} and ¢ L ¢'. Consider the quartets g := xy|wz,
q' = xw|yz, such that x e ANA", y e ANB, we BNA', and z € BNB'. Then, by
definition, .

B < %(xw + yz —xy —wz),
and,

B < ey + wz —xw = 32),
so that

By + By <O0. (3)
Note that g € ¥(o) and ¢’ € ¢(¢’). By Lemma 5.1, there exist at least n — 3 choices
of such ¢ and ¢/, which we denote by §;,4’, 1 <i<n — 3. In particular,

B 3 1 n—3
Uy + iy < "3 Z(ﬁ‘fi + ﬁq{)go
i=1

by Eq. (3).
Corollary 5.1. The set {c : T, > 0} is a pairwise compatible collection of splits,

and thus gives rise to a unique S-tree.

5.2. The refined Buneman index gives a good map
In this section we prove that the map ¥ : 2(S) — 2(S), defined by

Yood— Z LR

{o:1,>0}

and which we call the refined Buneman retraction, is a good map onto the space
of tree metrics. First we show that i fixes tree metrics. To do this we require the
following technical lemma.

e W e - - -
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Lemma 5.2. Suppose that x; € Z o, 0<i<r, are such that

Xr:xi =k=2.
i=0

Suppose that x; =1, for i > 0, and if r =1 then xo>=1. Then

-1
Z x,—xj + x__O(x()z ) ?k -1

Proof. Note that

-1 1 4
Z Xixj*}‘ﬁ)(x%‘—)zz{kz“(zx?‘*’lm)}.
i=1

i< j5i,j=0,..r

Hence, it is sufficient to find the maximum value of the function Y_._, x?+xg, subject
to the given constraints.

First, we find the maximum value of the function }__, x?, subject to the constraints
x; 21, 1<i<r, and 3_7_ x; = k — xp. A simple geometric argument shows that this
occurs at any of the r vertices of the convex polytope defined by this set of constraints,
i.e. at a point x; = k—xo —(r—1) and x; = 1, i # j. Substituting these values into the
intial sum, we see that we need to show that the minimum value of the expression

HE ~ ((k—x0) - (r =D +(r—=1)+x)},

subject to the constraint 0 <xo<k — r (where, if » = 1, then xo >1), is greater than
or equal to £ — 1. A routine check shows that this is in fact true, thus completing the
proof of the lemma. [J

Theorem 5.2. If d is a tree metric realized by the triple (T,L,w), then

_ 4+ _Jo if o is not a split of T,
Ho =M = w(e) if o is the split corresponding to edge e of T.

Proof. Suppose that ¢ = {4, B} corresponds to edge e of T. We divide the argument
into two cases: either min{|4|,|B|} =1 or |4],|B|>2.

In the first case we may suppose that 4 = {a}, which labels a leaf of 7" which is
an endpoint of the edge e. Let ¢;, 1 <i<k, denote the edges in T which have a vertex
v in common with edge e, let B;, 1<i<k, denote the subset of elements s € S such
that the unique path from L(s) to v passes along edge e;, and let By := L~!(v). Thus,
B= Uf:o B;.

Set €(c) := {aalbb’ : b,b’ € B, b # b'}. Thus, for ¢ = aa|bb’ € ¥(c) we have

B, = (ab+ab’ —bb).
If b€ By, b’ € B; with i # j, or b,b’ € By with b # b, then
ﬁq = W(e),

——d W .- i w -
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otherwise 8, > w(e). The number of such pairs b, b’ satisfying this equation is equal
to

Bo|(|1Bo| — 1)
S s+ 2D,

which, by Lemma 5.2, (subject to the constraint Zf:o |Bi| = |B] = n—1) is at least
n—2. Thus, the average of the n — 3 values of fi, used in the definition of i, is equal
to w(e).

We now consider the case |4|, |B|>2. Let v,w denote the endpoints of edge e.
Define the sets B;, 0<i<k, as in the case where ¢ was a pendant edge. Define the
sets 4;, 0<i</, in the same way, but this time using vertex w instead of v (so in
case w is a leaf, [ =0).

Let g = ad’|bb’, where a, @’ € A with a # d’ and b, b’ € B with b # &' In the case
where ‘

e ac4;, d €A4; with i #j, or a,a’ € 4y with a # a', and
e he B, b € B, with p#gq, or b,b' € By with b#b,
we see that

ﬁq = W(e)>

otherwise f, > w(e). Furthermore, the number of such g € €(g) is equal to

|4ol(|40] — 1) Bo|(|Bol — 1)
S ) AALDN 5 p, g PRI
i< juij=0,..,0 p<q;pg=0,..k
which, by Lemma 5.2, has a minimal value (subject to the constraints Zf:o || = |4],
and 3% |B;| = |B]) of
(4] = D(|B| = 1). )

This quantity, in turn, is always greater than or equal to n — 3, and hence the average
of the n — 3 values of B, used in the defintion of 7, is again equal to w(e).

It remains to show that if ¢ = {4,B} is not a split of T then f,<0. If o is
incompatible with some split ' = {4’,B8’} of T, then by Lemma 5.1 there exist at
least n — 3 quartets ¢ = ab|a’b’ for which a,d’ € A’, b,b’ € B' and {a,b} CA and
{d',b'} CB. Hence, it follows that

B, < % (ad +bb' —ab—d'b") < 0.

If these n — 3 quartets are labelled §,, - -,§,_; then
_ 1
ﬂ,;Sn—_g(ﬁq‘, +..+B,,) <0,

as claimed.
In case ¢ is compatible with all of the splits of T (but is not one of them), let T*
be the tree obtained from 7 by adding a new edge e to induce split o. Let v,w be
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the vertices contained in edge e and define the sets 4;, 0<i</, and B;, 0<i<k, as
before. Then any quartet ¢ = aa’|bb’, where a € A;, d’ € A; with i # j, or a, a’ € Ao
with @ # @', and b € B, b’ € By, with p # g, or b, b’ € By with b # ', gives

B, = S{min{ab + a't/,ab’ + a'b} — (ad' + bb')} = 0.

As before, the number of such ¢ is at least n — 3 (by Lemma 5.2) and we again have
I, <0.

Theorem 5.3. The map
Yodeo Y Eb

{o:7,>0}

is a good map, and @p = .

Proof. That i is continuous follows from the fact that 7i, is continuous for each
¢ € F(S), which can be easily verified using a standard continuity argument. By
Theorem 5.1, y/(d) is contained in F(§) for all d € 2(S), and by Theorem 5.2 (d)
equals d for all d € 7(S). The homogeneity and equivariance of i follow by the same
arguments that apply to the Buneman retraction. Furthermore, ¢ =<  since u; <,
for all ¢ € Z(S).

5.3. Identifving S-trees using the Buneman retraction and its refinement

We show how the Buneman retraction (or its refinement) essentially identifies the
underlying S-tree of a trec metric d’ when applied to a distance function d that is
close enough to d’. Precisely how close is “close enough” depends on the minimal
edge weight of the tree defined by d’. The following theorem complements a similar
result obtained by Atteson [1] for the neighbor-joining method (for which the proof is
much more involved), and who pioneered this type of minimal edge analysis.

Theorem 5.4. Let ¢ = g or Y (the Buneman retraction or its refinement). Suppose
that d' € 7(S) has associated S-tree T and edge weighting w. Let

x :=min{w(e) : e € T},
and suppose that for d € Z(S) one has
ld —d'||e < x/2.

Then the S-tree, t, associated to ¢(d) refines T and the weight of any edge in t that
does not correspond to an edge of T is less than x. In particular, if T is a fully
resolved tree (i.e. every vertex has degree 1 or 3), then t =T.

Proof. Suppose @ = @p and let ¢ be a split of T corresponding to edge e. Then
to(d') = w(e)=x. Now

He(d) — fo(d")] <26, 4)

e W - L - ——
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Fig. 2. All edges are weighted 1 except dotted edges, which are weighted .

where 6 = ||d — d’||o, as in the proof of Theorem 2.1. Hence, since § < x/2,

to(d) = po(d') — 20
>x—x=0,

and so ¢ is a split of ¢. Thus ¢ refines 7, and in particular, if T is fully resolved then
t=T.
If 7 is not fully resolved and o is a split of ¢ but not 7, then by (4)

to(d) < po(d’) 420
<0+4x,

and we deduce that the edge e of ¢ corresponding to ¢ has weight less than x.
The proof for ¢ = is exactly the same, except that the justification of the analogue
of (4) is slightly more involved.

5.4. The refined Buneman retraction is a strict refinement of the Buneman
retraction

In this section we give two examples to illustrate that, in certain cases, the refined
Buneman retraction gives us a tree which strictly refines the tree given by the Buneman
retraction, i.e. g < .

54.1. Example 1

For our first example, consider the metric dy on the set {1,...,5} given by the
edge-weighted graph metric in Fig. 2, where all edges are weighted length one, except
those which are dotted, which all receive edge weight &, for some k£ >0.

The Buneman tree for d; depends upon the value of k. For the case 0<<k <2 the
Buneman tree is simply a vertex. If k >2, then the Buneman tree consists of one edge
of length k —2, with its endpoints labelled by {1,2,3} and {4,5}. Thus, in either case,
the Buneman tree is highly unresolved (in the sense of [3]).

However, in contrast to this, the refined Buneman tree (i.e. that given by using the
refined Buneman index), the topology of which also depends upon k, and which is

——d R, .- S -
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(1-k)/2

Fig. 3. The refined Buneman tree: the top tree is for the case 0 <k <1 and the bottom for the case 1<k.

shown in shown in Fig. 3, is fully resolved for £ > 0, k£ # 1. Note that in the case
where £ = 1 we get, as expected, a star tree.

Finally, note that the tree obtained from dj by using the retraction defined by the
good map ¢, in Theorem 4.1 is the same as the Buneman tree, except that the edge
appears for k>1, and has length equal to £ — 1. Thus, for 1 < k < 2 the tree ¢ (dy)
refines the Buneman tree. Also, the splitstree graph [5, 8] of the edge weighted graph
in Fig. 2, given by considering all those splits ¢ € & with isolation index «, > 0, is
in fact the graph itself.

5.4.2. Example 2

As in [16] we analyzed the 16S rRNA sequences of seven chloroplasts and the
cyanobacterium Anacystis nidulans by using as our metric d the logdet values which
correct for multiple site substitutions under a non-stationary Markov model (for futher
details see [16]). The Buneman tree, and refined Buneman tree for d were then con-
structed using the computer package SplitsTree 2.2 [5]. The Buneman tree is highly
unresolved, with a vertex of degree six, and two internal edges. By contrast, the refined
Buneman tree has just one vertex of degree four, and all other non-leaf vertices have
degree 3, indeed it is essentially the tree reported in [16] with just one edge collapsed.

6. Conclusion

We have shown that our extension of Buneman’s construction is valid, and leads to
a map which is more refined, at least on certain inputs. It would be interesting to see if
there are other such refinements. Tt would also be useful to find ways of scaling (d)
so that it matches d more closely (in Example 5.4.2, for instance, the refined Buneman
tree distances underestimate d). One possibility would be to let M be the maximum

FUNED W O . - -
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(or average) value that d takes, M’ be the maximum (or average) distance in the tree
Y(d), and then to multiply each value of Y(d) by M/M’'. In ([8]) it is shown that the
Buneman tree distances are always less than or equal to the input distances, and it
is an interesting question whether this theorem also holds for the modified Buneman
map. Finally, we remark that it is very useful for applications in cases where n is large
to be able to compute the refined Buneman tree by an algorithm whose running time
grows polynomially with n. Fortunately such an algorithm has recently been described,
and we refer the interested reader to [7].
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