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Abstract

The evolutionary relationships between species are typically represented in the
biological literature by rooted phylogenetic trees. However, a tree fails to capture
ancestral reticulate processes, such as the formation of hybrid species or lateral
gene transfer events between lineages, and so the history of life is more accurately
described by a rooted phylogenetic network. Nevertheless, phylogenetic networks
may be complex and difficult to interpret, so biologists sometimes prefer a tree
that summarises the central tree-like trend of evolution. In this paper, we formally
investigate methods for transforming an arbitrary phylogenetic network into a
tree (on the same set of leaves) and ask which ones (if any) satisfy a simple
consistency condition. This consistency condition states that if we add additional
species into a phylogenetic network (without otherwise changing this original
network) then transforming this enlarged network into a rooted phylogenetic tree
induces the same tree on the original set of species as transforming the original
network. We show that the LSA (lowest stable ancestor) tree method satisfies
this consistency property, whereas several other commonly used methods (and
a new one we introduce) do not. We also briefly consider transformations that
convert arbitrary phylogenetic networks to another simpler class, namely normal
networks.
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1 Introduction

The traditional representation of evolutionary history is based on rooted phylogenetic
trees. Such trees provide a simple illustration of speciation events and ancestry. The
leaves correspond to known species, and the root represents the most recent common
ancestor of this set of species. However, a tree fails to capture ancestral reticulate
processes, such as hybridisation events or lateral gene transfer. Thus, the evolutionary
history is more accurately described by rooted phylogenetic networks (Huson et al,
2010; Steel, 2016). Nevertheless, it is often helpful to extract the overall tree-like
pattern that is present in a complex and highly reticulated network, sometimes referred
to as the ‘central tree-like trend’ in the evolution of the taxa (Puigbò et al, 2013;
Wolf et al, 2002). Such a tree is less complete than a network, but it is more easily
interpreted and visualised (DeSalle and Riley, 2020).

In this paper, we investigate ways to transform arbitrary rooted phylogenetic net-
works into rooted phylogenetic trees. There are many ways to do this, and we take
an axiomatic approach, listing three desirable properties for such a transformation.
We show that several current methods fail to satisfy all three properties; however, one
transformation (the LSA tree construction) satisfies all three. Our approach is similar
in spirit to an analogous axiomatic treatment of consensus methods (which transform
an arbitrary set of trees into a single tree) in Bryant et al (2017). We also briefly
consider transformations that convert phylogenetic networks to ‘normal’ networks (a
class of networks that allows a limited degree of reticulation). We begin by defining
some concepts that will play a central role in our axiomatic approach.

1.1 Preliminaries

In this paper, we only consider rooted phylogenetic networks and trees on any leaf
set X of taxa. Such trees and networks are defined by a connected acyclic graph
containing a set of vertices V and a set of arcs A. We refer to arcs as edges, which
are directed. The vertex ρ is determined as the root vertex with an out-degree of at
least 2, where all edges are directed away from ρ. The set of labelled leaves is defined
by X ⊆ V , which are vertices of an in-degree 1 and an out-degree 0. In phylogenetic
trees the remaining interior vertices are unlabelled, of in-degree 1 and of out-degree
at least 2 (Steel, 2016). In contrast to trees, we distinguish tree vertices with an in-
degree of 1 and an out-degree of at least 2 from reticulate vertices with an in-degree of
at least 2 in phylogenetic networks. Each reticulate vertex has an out-degree of 1. We
do not allow vertices with an in- and out-degree of 1 (Huson et al, 2010). Phylogenetic
networks can contain pairs of parallel edges. We let N(X) denote the set of rooted
phylogenetic networks, and T(X) be the set of rooted phylogenetic trees.

Let N ∈ N(X) be any phylogenetic network. Following Huson et al (2010), for any
vertex v ∈ V (N), except the root, the lowest stable ancestor (LSA) is defined as the
lowest vertex lsaN (v) = lsa(v) that is part of all directed paths from the root to v
without being v itself. Here, ‘lowest’ refers to the vertex closest to the leaves of the
network. Furthermore, the subscript N indicates that lsa(v) refers to vertices in the
network N . For any tree vertex, the LSA equals its parent vertex (Huson et al, 2010).
In Fig. 1.1, for example, lsaN (d) equals the vertex labelled t2, whereas lsaN (r1) is the
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Fig. 1.1: A rooted phylogenetic network N on X = {a, b, c, d, e, f, g} with the retic-
ulate vertices labelled r∗ and coloured red, and the edges leading to them coloured
green. The tree vertices are labelled t∗.

vertex labelled t3. The idea of the LSA can be extended by computing the LSA for
multiple vertices. Assume that Y ⊆ X denotes a non-empty set of taxa. The vertex
lsa(Y ) is the lowest vertex in all directed paths from the root to every y ∈ Y . For
short, we also write lsa(a, b, c, . . . ) instead of lsa({a, b, c, . . . }). In Fig. 1.1, for instance,
lsaN (d, e, f, g) is the vertex labelled t3.

Consider a network N ∈ N(X) and a subset Y ⊆ X. The restricted network N |Y
is obtained from N by restricting N to the leaves in Y . The root of the new network
N |Y is lsaN (Y ). After deleting all vertices and edges that are not part of any directed
path from the new root to any y ∈ Y , all remaining vertices with an in- and out-degree
of 1 are suppressed. When |Y | = 3, the resulting network is called a trinet (Semple
and Toft, 2021). We say that a rooted tree with exactly three leaves is a rooted triple.
In comparison to trinets, which can take an unlimited number of (unlabelled) shapes,
there are only two distinct shapes for rooted triples (Steel, 2016).

Two phylogenetic networks N,N ′ ∈ N(X) are isomorphic if a (directed graph)
isomorphism exists between these networks, that is the identity map on X. We write
N ∼= N ′ (Steel, 2016). The isomorphism of two trees can also be established by using
the concept of rooted triples. The following result is classical and well known (for a
proof, see, e.g. Theorem 1 from Bryant and Steel (1995)).

Lemma 1. Two phylogenetic trees T, T ′ ∈ T(X) are isomorphic if and only if, for
every subset U ⊆ X such that |U | = 3, the trees T restricted to U and T ′ restricted
to U are isomorphic:

T ∼= T ′ ⇐⇒ T |U ∼= T ′|U ∀U ⊆ X : |U | = 3. (1.1)

We also require the following notions. Let ΣX denote the group of permutations
on X. Given a network N ∈ N(X) and a permutation σ ∈ ΣX , let Nσ denote the
network obtained by reordering the labels of the leaves according to σ.

Let N ∈ N(X) be a phylogenetic network and T ∈ T(X) be a phylogenetic tree.
We say that T is displayed by N if T can be obtained from N by the following process:
For each reticulation vertex, delete all but one of its incoming arcs, then ignore any
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resulting leaves that are not inX and suppress any vertices of in-degree and out-degree
both equal to 1.

2 Axiomatic properties for transformations that
simplify phylogenetic networks

Let N′(X) be a defined subclass of the set of all phylogenetic networks N(X) on any
leaf set X. We assume that the definition ensures the property that permuting the
taxa of any member does not destroy membership. Mainly, we focus on the case where
N′(X) = T(X) holds, and we also briefly discuss the case where N′(X) is the class of
normal networks Ñ(X). The transformations that we study are defined as follows:

φ : N(X) −→ N′(X) ⊆ N(X), (2.1)

for every leaf set X (including the subsets of any given leaf set).
We investigate the question of whether there are transformations that satisfy the

following three specific properties (following the approach in Dress et al (2010)):

(P1) N ∈ N′(X) =⇒ φ(N) = N ,
(P2) σ ∈ ΣX , N ∈ N(X) =⇒ φ(Nσ) ∼= φ(N)σ,
(P3) Y ⊆ X,N ∈ N(X) =⇒ φ(N |Y ) ∼= φ(N)|Y .

Property P1 states that given a network that belongs to the subclass, the transfor-
mation returns the original network without further changes. It is an essential property
because the transformation should not change the relationship of a set of taxa when
the network correctly shows its evolutionary history (Dress et al, 2010). This property
implies that N ∈ N′(X) if and only if φ(N) ∼= N .

Property P2 corresponds to a mathematical term that is referred to as equivari-
ance (Bryant et al, 2017; Dress et al, 2010). This means that the names of the taxa do
not play any specific role in deciding how to simplify a network. In other words, when
a transformation is applied to a network with permuted leaf labels, it should result in
the same network as when we apply the transformation to the original network and
then relabel the leaves. This property ensures that only the relationships between the
taxa are relevant and not the way the taxa are named or ordered (Dress et al, 2010).
Thus, this property could fail, for example, if a transformation depends on the order
in which a user enters the species into a computer program, or if a non-deterministic
approach is applied in which ties arising in some optimisation procedure are broken
randomly.

It is easily checked that all of the methods we consider in this paper satisfy these
two properties.

Property P3 is more interesting and we refer to it as the consistency condition. It
states that taking a subnetwork on a subset of taxa and applying the transformation
gives the same network as that obtained by applying the transformation first and
taking the subnetwork induced by the subset of taxa afterwards. The rationale for
this axiom is as follows. Suppose a biologist adds new species to an existing network
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without changing the original network. Then, after transforming the new (enlarged)
network, the network relationship between the original species should remain the
same. It turns out that P3 holds if and only if it holds for all subsets U of X of size
3. We establish this result for transformations that convert a phylogenetic network
into a phylogenetic tree. To prove the statement, we first require another result. The
proof of the following result is provided in the Appendix.

Lemma 2. Let N ∈ N(X) be a phylogenetic network and let Y ′, Y with Y ′ ⊆ Y ⊆ X
denote two subsets. The network N restricted to Y and then restricted further to Y ′

gives a network that is isomorphic to N restricted to Y ′. Formally:

Y ′ ⊆ Y ⊆ X,N ∈ N(X) =⇒ (N |Y )|Y ′ ∼= N |Y ′. (2.2)

Lemma 3. Let N ∈ N(X) be a rooted phylogenetic network and φ denote a trans-
formation, where N′(X) = T(X). Property P3 holds if and only if P3 holds for subsets
U of size 3:

φ(N |Y ) ∼= φ(N)|Y ∀Y ⊆ X ⇐⇒ φ(N |U) ∼= φ(N)|U ∀U ⊆ X : |U | = 3. (2.3)

Proof. Clearly, if P3 is satisfied for all subsets Y of X, then P3 holds for all U ⊆ X
of size 3.

We now prove that if P3 holds for all U ⊆ X of size 3, then P3 is satisfied for all
Y ⊆ X. Assume that P3 holds for all subsets U of X of size 3. Considering any Y , it
suffices to show that

φ(N |Y )|U ∼= (φ(N)|Y )|U ∀U ⊆ Y, |U | = 3, (2.4)

because of Lemma 1. By Lemma 2 we have:

(φ(N)|Y )|U ∼= φ(N)|U. (2.5)

Thus, it remains to show that:

φ(N |Y )|U ∼= φ(N)|U ∀U ⊆ Y, |U | = 3. (2.6)

Let N ′ = N |Y be the restricted network. We have:

φ(N |Y )|U = φ(N ′)|U (substitution)
∼= φ(N ′|U) (assumption)

= φ((N |Y )|U) (substitution)
∼= φ(N |U) (Lemma 1)
∼= φ(N)|U (assumption)

Consequently, P3 holds for all Y ⊆ X if it holds for all U ⊆ X : |U | = 3, and vice
versa.
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Fig. 3.1: (a) The blob tree φb(N) for the network N in Fig. 1.1, which is also the
closed tree φc(N). (b) The tree that corresponds to the tight clusters transformation
φtc(N).

3 Results

We now consider various methods to transform an arbitrary rooted phylogenetic net-
work into a rooted phylogenetic tree, and show that exactly one of these methods
satisfies all three of the properties (P1, P2, P3).

3.1 Transformations that fail to satisfy the consistency
condition

We consider four transformations that transform a rooted phylogenetic network into
a tree and satisfy P1 and P2. First, Gusfield (2014) introduced the blob tree transfor-
mation, which we denote by φb. In this transformation, a biconnected component1 is
replaced by a new vertex; moreover, if several biconnected components share a ver-
tex, they are only replaced by one vertex (for further details, see Gusfield (2014)). An
example blob tree for the network N in Fig. 1.1 is shown in Fig. 3.1a.

Second, we include the closed tree transformation defined by Huber et al (2019).
For this method, we extract all closed sets of the network. For N ∈ N(X), a subset
Y ⊆ X is a closed set of N if |Y | = 1, or if |Y | ≥ 2 and the set of leaves of N
that are descended from the vertex lsaN (Y ) is equal to Y . In Fig. 1.1 the subset
Y = {d, e, f, g} corresponds to a closed set because the descending vertices of lsaN (Y )
equal {d, e, f, g}. From (Huber et al, 2019), the collection of all closed sets of a network
forms a hierarchy (i.e. a collection of nested clusters (subsets of the leaf set)), and so
corresponds to a tree (see Fig. 3.1a). We denote this transformation (from N(X) to
T(X)) as φc.

Another method is the tight clusters transformation described by Dress et al (2010),
which we denote by φtc. It works exactly as the previous transformation, except that
we extract all ‘tight clusters’ from the network instead of the closed sets. Formally,
for N ∈ N(X), a non-empty subset C of X is a tight cluster of N if there is a subset

1A biconnected component of a phylogenetic network is a maximal subgraph that cannot be disconnected
by removing a single vertex (van Iersel et al (2010)).
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S of vertices of N for which C is the set of leaves of N reachable from S and deleting
S from N separates C from X \ C. In Fig. 1.1, for instance, C = {a, b} is a tight
cluster as S = {t4, t5} is a valid subset that separates {a, b} from {c, d, e, f, g}. The
tight clusters of N also form a tree (Dress et al, 2010), which is shown in Fig. 3.1b.

Finally, it is possible to apply any consensus method (e.g. strict consensus, major-
ity rule, Adams consensus) on the set of trees t(N) that are displayed by a network
N to get a transformation that satisfies P1 and P2. We considered the Adams
consensus method Ad({T1, T2, ...}) for a set of trees {T1, T2, ...}, which is a mathemat-
ically natural method based on the notion of ‘nesting’ (Adams, 1972). To construct
Ad({T1, T2, . . . , Tk}) represent each tree Ti as a hierarchy. The maximal clusters of
Ad({T1, T2, . . . Tk}) are simply the collection of non-empty intersections of the maxi-
mal clusters of T1, T2, . . . , Tk (these non-empty intersections partition X, and can be
computed in polynomial time). The method then adds further clusters recursively by
restricting the trees T1, T2, . . . , Tk to each block of the partition of X described. This
process continues until the singleton sets {x} (for all x ∈ X) are present in the result-
ing partitions, in which case the resulting hierarchy of sets corresponds to a rooted
phylogenetic tree on leaf set X, which is Ad({T1, T2, . . . , Tk}). For further details, see
Steel (2016).

Our new Adams consensus tree transformation is defined as follows:

φad : N(X) → T(X), N 7→ Ad(t(N)). (3.1)

It turns out that all four of the transformations mentioned above fail to satisfy
P3. Stated formally:

Proposition 1. The transformations φb, φc, φtc and φad fail to satisfy P3.

Counterexamples for the proof of this result are provided in the second part of the
Appendix.

3.2 A transformation that satisfies the consistency condition

We now describe a transformation that does satisfy all three of the properties
(P1, P2, P3). First, we define the transformation. Then, we prove that the consistency
condition (P3) is satisfied (properties P1 and P2 are easily seen to also hold for this
transformation).

For any given rooted phylogenetic network N , one can compute a rooted phyloge-
netic tree as follows: First, for every reticulation vertex r in N , determine its lowest
stable ancestor lsa(r). Then, delete all edges leading into r and create a new edge from
lsa(r) to r. Second, repeatedly delete all unlabelled leaves and suppress all vertices that
have both in- and out-degree of 1, until no further such operation is possible (Huson
et al, 2010). This tree Tlsa(N) is uniquely defined and is called the LSA tree for N .

We denote this transformation as follows:

φlsa : N(X) → T(X), N 7→ Tlsa(N). (3.2)
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Fig. 3.2: (a) A rooted phylogenetic network N from Jetten and van Iersel (2018)
based on a study from Marcussen et al (2014) with the reticulate vertices coloured
red, and the edges leading to them coloured green. (b) The LSA tree φlsa(N) of N .

Fig. 3.2 shows the computation of the LSA tree for a biological network, which
includes reticulate evolution, as investigated in the study of the Viola genus by Mar-
cussen et al (2014). The network N was studied in Jetten and van Iersel (2018). We
used PhyloSketch (Huson and Steel, 2020) to produce the LSA tree φlsa(N).

Before we prove that P3 is satisfied, we look at a certain relationship between the
LSA of a subset Y and the LSA of two vertices a, b ∈ Y .

Lemma 4. Let N ∈ N(X) be a phylogenetic network, and Y ⊆ X denote a non-
empty set with a, b ∈ Y . Then, lsaN (a, b) lies on all directed paths from lsaN (Y ) to
both a and b.

Proof. First, we will derive a contradiction to show that lsaN (a, b) is either a descen-
dant of lsaN (Y ) or is equal to it. Assume that lsaN (Y ) is a descendant of lsaN (a, b).
The LSA of Y is defined as the lowest vertex that is part of all directed paths from
the root to each y ∈ Y . Therefore, the LSA of a and b is either lsaN (Y ) itself or a
descendant of the LSA of Y . This is a contradiction to the assumption. On the other
hand, suppose that lsaN (Y ) and lsaN (a, b) are different, and neither is a descendant
of the other. This is impossible because a, b ∈ Y .

Second, we show that lsaN (a, b) lies on all directed paths from lsaN (Y ) to a and
b. We consider two cases. In the first case, suppose that lsaN (a, b) = lsaN (Y ). In this
case, lsaN (a, b) is clearly part of every directed path from lsaN (Y ) to any y ∈ Y .
In the other case, lsaN (a, b) is a descendant of lsaN (Y ). Without loss of generality,
assume that at least one directed path from lsaN (Y ) to a does not include lsaN (a, b).
According to the definition of the LSA, lsaN (Y ) is part of all directed paths from
the root to a, and this is also true for lsaN (a, b). If lsaN (Y ) and lsaN (a, b) lie on
every directed path from the root to a, and lsaN (a, b) is a descendant of lsaN (Y ),
lsaN (a, b) needs to be part of all directed paths from lsaN (Y ) to a, a contradiction to
the assumption. The same applies for b.

There is a similar relationship when it comes to the LSA of reticulate vertices.
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Lemma 5. Let N ∈ N(X) be a phylogenetic network with a, b ∈ X. Consider a
reticulate vertex r ∈ V (N) that is part of a directed path from lsaN (a, b) to a. The
LSA of r is either a descendant of lsaN (a, b) or lsaN (a, b) = lsaN (r) holds.

Proof. The two vertices lsaN (a, b) and lsaN (r) have to be comparable because r lies
on a directed path from lsaN (a, b) to a. Thus, suppose that lsaN (a, b) is a descendant
of the LSA of r. Because r is part of a directed path from lsaN (a, b) to a, there are
at least two directed paths from the root to r, and thus from the root to a. All these
directed paths need to include the lsaN (a, b) and lsaN (r) according to the definition
of the LSA. Therefore, the lsaN (r) must either be lsaN (a, b) itself or a descendant of
lsaN (a, b), which is a contradiction to the assumption.

In contrast to all the other above mentioned transformations, the LSA tree trans-
formation satisfies P3, as we now state formally.

Theorem 1. The LSA tree method (φlsa) satisfies P3:

(P3) Y ⊆ X,N ∈ N(X) =⇒ φlsa(N |Y ) ∼= φlsa(N)|Y.

In other words, the LSA tree of a subnetwork on a subset of taxa equals the LSA tree
of the original network restricted to the same subset of taxa.

In order to prove this theorem, we first require two results.

Lemma 6. Let N ∈ N(X) denote a rooted phylogenetic network and let Y be a non-
empty subset of X. For every pair of vertices a, b ∈ Y , lsaN (a, b) = lsaN |Y (a, b) holds.
In other words, restricting the network does not affect the LSA of pairs of vertices.

Proof. The root of the restricted network N |Y corresponds to lsaN (Y ). According
to Lemma 4, the LSA of a and b is part of the directed path from lsaN (Y ) to a and b.
All vertices that are part of a directed path from the new root to both a and b remain.
Vertices that have an in- and out-degree of 1 after deleting all vertices and edges that
do not belong to the restricted network are suppressed. The vertex lsaN (a, b) has out-
degree of at least 2 because there are at least two directed paths (one to a and another
to b) going through this vertex. This means that lsaN (a, b) is not suppressed. Thus,
lsaN (a, b) is equal to lsaN |Y (a, b) ∀a, b ∈ Y , as the directed path of the remaining
leaves does not change.

Lemma 7. Let T ∈ T(X) be the LSA tree of N . For all pairs of vertices a, b ∈ X,
lsaN (a, b) equals lsaT (a, b).

Proof. Two cases need to be distinguished.
In the first case, no reticulate vertex lies on any directed path from lsaN (a, b) to

both a and b. By applying the LSA tree transformation, vertices with in- and out-
degree of 1 may be suppressed within these directed paths, but this does not affect
the LSA of a and b. Thus, lsaN (a, b) = lsaT (a, b).

In the second case, assume that there is at least one reticulate vertex r in at least
one of the directed paths (either from lsaN (a, b) to a or lsaN (a, b) to b). This directed
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path changes by applying the LSA tree method as there is a new edge from lsaN (r)
to r. By Lemma 5, either lsaN (a, b) = lsaN (r) holds, or the LSA of r is a descendant
of lsaN (a, b). Therefore, the modification of the directed path does not affect the LSA
of a and b. Thus, lsaN (a, b) = lsaT (a, b).

Proof of Theorem 1. It is sufficient to prove the following statement because
of Lemma 3:

φlsa(N |U) ∼= φlsa(N)|U ∀U ⊆ X : |U | = 3. (3.3)

By definition of the LSA tree method, when |U | = 3, both φlsa(N |U) and φlsa(N)|U
are rooted phylogenetic trees with exactly three leaves. These trees can only take
two different shapes; they either have one or two interior vertices. Assume that U =
{a, b, c} ⊆ X. We distinguish two different cases.

In the first case, we apply the LSA tree method to N |U . In the resulting tree a and
b are more closely related to each other than to c, without loss of generality. Therefore,
lsaφlsa(N |U)(a, b) ̸= lsaφlsa(N |U)(a, c) = lsaφlsa(N |U)(b, c). This implies:

lsaN |U (a, b) ̸= lsaN |U (a, c) = lsaN |U (b, c) (Lemma 7)

⇒ lsaN (a, b) ̸= lsaN (a, c) = lsaN (b, c) (Lemma 6)

⇒ lsaφlsa(N)(a, b) ̸= lsaφlsa(N)(a, c) = lsaφlsa(N)(b, c) (Lemma 7)

⇒ lsaφlsa(N)|U (a, b) ̸= lsaφlsa(N)|U (a, c) = lsaφlsa(N)|U (b, c). (Lemma 6)

Thus, φlsa(N |U) is isomorphic to φlsa(N)|U as the LSA of all pairs of leaves is the
same in both trees, and as noted above there are only two possible shapes (having one
or two interior vertices).

In the other case, we consider the tree where all three leaves are equally related
to each other. Thus, lsaφlsa(N |U)(a, b) = lsaφlsa(N |U)(a, c) = lsaφlsa(N |U)(b, c) holds.
This implies:

lsaN |U (a, b) = lsaN |U (a, c) = lsaN |U (b, c) (Lemma 7)

⇒ lsaN (a, b) = lsaN (a, c) = lsaN (b, c) (Lemma 6)

⇒ lsaφlsa(N)(a, b) = lsaφlsa(N)(a, c) = lsaφlsa(N)(b, c) (Lemma 7)

⇒ lsaφlsa(N)|U (a, b) = lsaφlsa(N)|U (a, c) = lsaφlsa(N)|U (b, c). (Lemma 6)

Therefore, again, φlsa(N |U) is isomorphic to φlsa(N)|U .

4 Concluding comments

In this paper, we have discovered that the LSA tree transformation satisfies all three
desirable properties (P1–P3), whereas several other published transformations fail to
satisfy P3.

Our results suggest further questions and lines of inquiry. For example, is the LSA
tree the only transformation from networks to trees that satisfies P1–P3 and if not,
can one classify the set of such transformations?
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Fig. 4.1: (a) The normalisation φno(N) of the network N in Fig. 3.2a.
(b) The normalisation of the restricted network φno(N |Y ) with
Y = {Leptidium, Rubellium, Melanium}. (c) The restricted normalisation φno(N)|Y
with Y = {Leptidium, Rubellium, Melanium}.

Secondly, for the transformation N 7→ Ad(t(N)) described in (3.1), is it possible to
compute the Ad(t(N)) efficiently (i.e., in polynomial time in |X|)? Although comput-
ing the Adams consensus of a fixed set of trees can be done in polynomial time, the
set t(N) can grow exponentially with the number of reticulation vertices in N . More
generally, for other consensus tree methods (e.g., strict consensus, majority rule) one
can similarly define a transformation from phylogenetic networks to trees based on
t(N), so the same question of computational complexity arises for these methods.

Finally, an alternative to transforming arbitrary phylogenetic networks to rooted
trees is to consider transformations to other well-behaved network classes that allow
for limited reticulation. A particular class of interest is the set of normal networks
(i.e., every vertex is either a leaf or has at least one child that is a tree vertex, and
there is no arc (u, v) for which there is another path from u to v) which have attractive
mathematical and computational characteristics (Francis et al, 2021; Francis, 2021;
Kong et al, 2022). Thus, it is of interest to consider transformations from arbitrary
phylogenetic networks on X to the class of normal networks on X and ask if such
transformations can satisfy P1, P2 and P3. For the simple normalisation method φno

introduced in Francis et al (2021), P1 and P2 hold but P3 fails. A counterexample is
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shown in Fig. 4.1. Whether or not there is a transformation that satisfies all three
properties is thus an interesting question. One possible candidate could be the trans-
formation described by Willson (2022), but we do not consider this further in this
paper.
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Appendix

We first prove Lemma 2.

Proof. Let N ∈ N(X) be any network. Instead of the two subsets Y and Y ′, we
consider S = X \Y and S′ = Y \Y ′. Furthermore, let N |Y = N−S ∈ N(X \S) denote
the network restricted to Y . First, Eqn. (4.1) is proven. We then establish Eqn. (2.2)
by induction:

(N−x)−S′ ∼= N−({x}∪S′) with x ∈ X,x /∈ S′. (4.1)

To obtain N−x from N , we keep all vertices and edges that are part of any directed
path from lsaN (X \ x) to any n ∈ X \ x. To get (N−x)−S′

, we also delete all vertices
and edges that lie on any directed path from lsaN (X \ S′) to any s ∈ S′, excluding
the ones that are part of a directed path from lsaN (X \ S′) to any n ∈ X \ S′.

To obtain N−({x}∪S′) from N , we can proceed the same way as described above
because {x} ∩ S′ = ∅, by definition. First, delete x. Second, remove S′. Thus,
(N−x)−S′ ∼= N−({x}∪S′). Eqn. (2.2) can be rephrased as follows:

(N−S)−S′ ∼= N−(S∪S′). (4.2)

We prove Eqn. (4.2) by induction on k = |S|. To start the induction, suppose k = 1.
This case equals Eqn. (4.1) and was proven above. Now, assume that Eqn. (4.2) is
true for some k. We show that the statement then holds for k + 1. Suppose that
S = {s1, ..., sk, sk+1}. We have:

(N−S)−S′
= (N−{s1,...,sk,sk+1})−S′

(substitution)

= (N−({s1,...,sk}∪{sk+1}))−S′
(set operation)

∼= ((N−{s1,...,sk})−sk+1)−S′
(induction hypothesis)

∼= (N−{s1,...,sk})−({sk+1}∪S′) (Eqn. (4.1))

∼= N−({s1,...,sk}∪{sk+1}∪S′) (induction hypothesis)

= N−(S∪S′) (substitution)
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(b) T = φb(N) = φc(N) = φtc(N)
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e

(c) φb(N |{a, b, e}) = φc(N |{a, b, e}) =
φtc(N |{a, b, e})

 

a

e

b

(d) T |{a, b, e}

Fig. 4.2: (a) A rooted phylogenetic network N ∈ N(X) on leaf set
X = {a, b, c, d, e, f, g}. (b) The blob tree φb(N), the closed tree φc(N) and the
result of the tight clusters transformation φtc(N) give rise to the same tree T . (c)
The restricted network N |{a, b, e}, which corresponds to its transformation. (d) The
restricted tree T |{a, b, e}.

Eqn. (4.2) is proven, and thereby, Eqn. (2.2).

Secondly, turning to the proof of Proposition 1, Fig. 4.2 provides a counterexample
for the transformations φb, φc and φtc. The counterexample for the transformation
φad is shown in Fig. 4.3.
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Fig. 4.3: (a) A rooted phylogenetic network N ∈ N(X) on leaf set
X = {a, b, c, d, e, f, g}. (b) The Adams consensus tree φad(N) of N . (c) The
restricted transformed network φad(N |{b, d, g}). (d) The restricted Adams consensus
tree φad(N)|{b, d, g}.
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