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Abstract
Phylogenetic networks provide a more general description of evolutionary relation-
ships than rooted phylogenetic trees. One way to produce a phylogenetic network is
to randomly place k arcs between the edges of a rooted binary phylogenetic tree with
n leaves. The resulting directed graph may fail to be a phylogenetic network, and
even when it is it may fail to be a tree-child or normal network. In this paper, we
first show that if k is fixed, the proportion of arc placements that result in a normal
network tends to 1 as n grows. From this result, the asymptotic enumeration of normal
networks becomes straightforward and provides a transparent meaning to the combi-
natorial terms that arise. Moreover, the approach extends to allow k to grow with n (at

the rate o(n
1
3 )), which was not handled in earlier work. We also investigate a subclass

of normal networks of particular relevance in biology (hybridization networks) and
establish that the same asymptotic results apply.

Keywords Phylogenetic network · Trees · Asymptotic enumeration · Generating
function

1 Introduction

Rooted phylogenetic networks (defined in Sect. 1.1 below) provide a precise way to
represent the evolution of objects (species, viruses, languages etc.) under the twin
processes of speciation and reticulation (Huson et al. 2010). The leaves (vertices of
out-degree 0) of these networks typically correspond to observed individuals at the
present, and the other vertices correspond to ancestral species. Over the last two
decades, the mathematical, statistical, and computational properties of phylogenetic
networks have become an active area of research. Various classes of networks with
particular properties have been identified, and the relationships betweenvarious classes
of networks has been investigated (for a recent survey, see Kong et al. 2022). Exact
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and asymptotic enumeration techniques can then be used to determine the size of
different network classes, and thereby compare the size of a class to a given subclass.
Combinatorial enumeration can also provides structural insight into various network
classes, since such insights often arise as a byproduct of counting results.

The simplest phylogenetic network is a rooted tree, whichmodels speciation (only).
A slightly more general class is that of hybridization networks, which also allow pairs
of species in the past to combine to form new (hybrid) species.

In this paper, we focus on a class of networks that includes hybridization networks,
but is slightlymore general, namely the class of normal networks. Such networks enjoy
a number of desirable properties (see e.g., Francis (2025)). We describe a new way
to asymptotically count the class of normal networks with n leaves and k reticulation
vertices as n becomes large (with k fixed), a topic that has been investigated by quite
different methods by the first author in Fuchs et al. (2019, 2021) and Fuchs et al.
(2022). We then show how the results can be extended to allow k to grow (slowly)
with n, and then extend this approach to the subclass of hybridization networks. We
begin with some definitions.

1.1 Definitions: Networks, Decorated Trees, and Induced Subdivision Trees

In this paper, all trees and networks are directed graphs. Throughout, we let [n] denote
the set {1, . . . , n}. A (binary) phylogenetic network on [n] is a directed acyclic graph
with n leaves (vertices of out-degree 0) labelled bijectively by the elements of [n],
and with each non-leaf vertex having in-degree 1 and out-degree 2 (tree vertices) or
in-degree 2 and out-degree 1 (reticulation vertices), or in-degree 0 and out-degree 1
(the root of the network at the top of an ancestral root edge). Edges which contain a
reticulation vertex are called reticulation edges; all others are called tree edges.

Two phylogenetic networks are regarded as equivalent if there is a directed graph
isomorphism between them that maps i to i for each i ∈ [n]. Three important classes
of phylogenetic networks are the following:

• A tree-child network is a phylogenetic network for which each non-leaf vertex has
at least one of its outgoing edges directed to a tree vertex or a leaf.

• A normal network is a tree-child network that has no ‘shortcut’ edge (i.e., no edge
(u, v) for which there is another path from u to v).

• A phylogenetic tree is a phylogenetic network with no reticulation vertices.

Thus, tree-child networks include normal networks which include phylogenetic trees.
For more background and details on phylogenetic networks, see Huson et al. (2010).

Let Tn denote the set of phylogenetic trees on leaf set [n]. For T ∈ Tn and k � 1,
let S(T , k) denote the set of all possible ordered pairs (Tk, ωk), where Tk and ωk are
defined recursively as follows: For k = 1, set ω1 = (p1, p′

1), where p1 subdivides
some edge of T and p′

1 subdivides some edge of the resulting tree. Let T1 be the
resulting subdivided tree (with two subdivision vertices).

For k > 1, let ωk = ωk−1 ∪ {(pk, p′
k)} where pk subdivides some edge of Tk−1

and p′
k subdivides some edge of the resulting tree. Let Tk be the resulting subdivided

tree (with 2k subdivision vertices).
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Fig. 1 (i): A phylogenetic tree T with four leaves (a, b, c, d ∈ [4]), with all edges directed vertically
downwards. (ii) The directed graph G((T3, ω3)) obtained from T by adding k = 3 pairs of subdivision
points to produce a 3-fold decorated tree, and then joining pi to p′

i for each i . In this example, the graph
contains a directed cycle and thus does not correspond to a phylogenetic network. (iii) The associated
induced subdivision tree which contains the six vertices (p1, p2, p3, p

′
1, p

′
2, p

′
3) (indicated in red) and two

other vertices of T (indicated in black) (color figure online)

We call (Tk, ωk) a k-fold decorated tree on [n] with base tree T . Thus, S(T , k) is
the set of k-fold decorated trees with base tree T .

Let G((Tk, ωk)) be the directed graph obtained from Tk by adding an arc from pi
to p′

i for each i = 1, . . . , k. Note that G((Tk, ωk)) may contain directed cycles (in
particular, it need not be a phylogenetic network).

We also introduce a further notion associated with any k-fold decorated tree
(Tk, ωk). Consider the minimal subtree containing the 2k subdivision vertices, which
we call the induced subdivision tree. Note that every leaf of the induced subdivision
tree is a subdivision vertex of G((Tk, ωk)); in addition, there might also be subdivision
vertices which are non-leaf vertices, as occurs in Fig. 1(iii).

These concepts are illustrated by the example shown in Fig. 1.
We also employ standard asymptotic notation: f (n) ∼ g(n) if limn→∞ f (n)

g(n)
=

1, f (n) = O(g(n)) if f (n) � Cg(n) for a constant C , and f (n) = o(g(n)) if
limn→∞ f (n)

g(n)
= 0. Moreover, we use [zn] f (z) for the n-th coefficient of a generating

function f (z), and for any odd integer n > 1, we let n!! denote the product of the odd
numbers from 1 to n (n ‘double factorial’ or ‘semifactorial’).

2 Results

We begin by counting the set S(T , k).

Lemma 1 The number of k-fold decorated trees (Tk, ωk) on [n] with base tree T is
given by:

|S(T , k)| = (2n − 1) · (2n) · · · (2n + 2k − 2)

k! ∼ 4kn2k

k! .
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Proof The number of arcs in the tree T (with an ancestral root edge) is (2n − 1) so
there are this many choices for p1. Placing p1 creates a tree with 2n arcs, so there
are 2n choices for p′

1. Continuing in this way for the k pairs of points (pi , p′
i ) gives

the term in the numerator, and the k! in the denominator accounts for the fact that the
same k-fold decorated tree can be obtained by placing the pairs of points (pi , p′

i ) onto
the arcs of T in any order.

The asymptotic part of the result is obtained by noting that the numerator is a
polynomial of degree 2k in 2n. �	

Next, we define the set:

S(n, k) :=
⋃

T∈Tn
S(T , k).

Thus, by Lemma 1,

|S(n, k)| =
∑

T∈Tn
|S(T , k)| = (2n − 1)(2n) · · · (2n + 2k − 2)

k! rn .

where

rn = |Tn| = (2n − 3)!! = (2n − 2)!
2n−1(n − 1)! ∼

√
2

2

(
2

e

)n

nn−1.

Consequently,

|S(n, k)| ∼ 22k−1
√
2

k!
(
2

e

)n

nn+2k−1. (1)

Remark 2 For later purposes, we point out that (1) also holds for k = o(
√
n) as

(2n − 1)(2n) · · · (2n + 2k − 2) = (2n)2k
(
1 − 1

2n

) 2k−2∏

j=0

(
1 + j

2n

)

= (2n)2k
(
1 + O(n−1)

)
e
∑2k−2

j=0 log
(
1+ j

2n

)

= (2n)2k
(
1 + O(n−1)

)
e
∑2k−2

j=0 O( j/n)

= (2n)2k
(
1 + O(n−1)

)
eO(k2/n)

= (2n)2k
(
1 + O

(
k2

n

))
,

where we used:
2k−2∑

j=0

j = (2k − 2)(2k − 1)

2
= O(k2).
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Next, we partition S(n, k) into three disjoint subsets:

S(n, k) = Sc(n, k) 	 Sno(n, k) 	 S¬no(n, k).

The first set on the right (Sc(n, k)) consists of all k-fold decorated trees (Tk, ωk) on [n]
such that G((Tk, ωk)) contains a cycle. Thus the remaining k-fold decorated trees on
[n] are such that G((Tk, ωk)) is a phylogenetic network. We then partition this set of
phylogenetic networks into two disjoint subsets: those networks for whichG((Tk, ωk))

is or is not a normal network (Sno(n, k) and S¬no(n, k), respectively).
Our goal is to show that the contributions of Sc(n, k) and S¬no(n, k) are

asymptotically negligible in (1). We start by observing the following.

Lemma 3 The induced subdivision tree has 4k − 2 − � edges where � is the number
of non-leaf subdivision vertices.

Proof If the induced subdivision tree has � non-leaf subdivision vertices, then it is a
tree with 2k−� leaves, � unary vertices (including possibly the root; see, for example,
the third panel in Fig. 1), and the remaining 2k− �−1 vertices are the binary vertices.
Every vertex except the root has an incoming edge and this is the total number of
edges. Thus, the number of edges is:

2k − �︸ ︷︷ ︸
leaves

+ �︸︷︷︸
unary
vertices

+ 2k − � − 1︸ ︷︷ ︸
binary vertices

− 1︸︷︷︸
root

= 4k − 2 − �.

�	
In addition, we have the following.

Lemma 4 Denote by Sn,k,� the number of k-fold decorated trees (Tk, ωk) on [n] such
that the induced subdivision tree has exactly � non-leaf subdivision vertices. Then, for
fixed k and �, as n → ∞,

Sn,k,� = O
((

2

e

)n

nn+2k−1−�/2
)

.

Proof Consider induced subdivision treeswith 2k−� leaves and � non-leaf subdivision
vertices. The k-fold decorated trees (Tk, ωk) which are counted by Sn,k,� are obtained
from these induced subdivision trees by the following process of attaching rooted
phylogenetic trees via the root to the induced subdivision tree. First, an ancestral root
edge is attached to the root of the induced subdivision tree. Then, identify each leaf
of the subdivision tree with the root of a phylogenetic tree and along each edge of
the subdivision tree attach an ordered sequence of (zero or more) rooted phylogenetic
trees, each of which is joined by its root to a subdividing vertex of the edge. The leaf
sets of the attached trees are then suitably relabelled so that all labels from 1, . . . , n
occur exactly once in (Tk, ωk) (this is achieved automatically by the use of exponential
generating functions; see the product and sequence constructions in Section II.2 of
Flajolet and Sedgewick (2009)).
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Note that, by Lemma 3, there are 4k − 1 − � ordered sequences of phylogenetic
trees in total.

The construction above, in terms of exponential generating function, gives the
following for a fixed induced subdivision tree:

r(z)2k−�

︸ ︷︷ ︸
trees below

leaves

· 1

(1 − r(z))4k−1−�

︸ ︷︷ ︸
sequences of trees

on edges

, (2)

where

r(z) :=
∑

n�1

rn
zn

n! = 1 − √
1 − 2z

counts phylogenetic trees and thus 1/(1 − r(z)) counts sequences of phylogenetic
trees.

To obtain the coefficient of (2), we use singularity analysis; see Chapter VI of
Flajolet and Sedgewick (2009). First, as z → 1/2,

r(z)2k−�

(1 − r(z))4k−1−�
∼ 1

(1 − 2z)2k−1/2−�/2 .

By Corollary VI.1 in Flajolet and Sedgewick (2009), this gives (up to a constant) the
upper bound for Sn,k,�

n![zn] r(z)2k−�

(1 − r(z))4k−1−�
∼ n!2n n2k−3/2−�/2

�(2k − 1/2 − �/2)
= O

((
2

e

)n

nn+2k−1−�/2
)

as claimed. �	
We can now show that the contributions of Sc(n, k) are asymptotically negligible

in (1).

Proposition 5 We have,

|Sc(n, k)| = O
((

2

e

)n

nn+2k−3/2
)

.

Proof If a k-fold decorated tree (Tk, ωk) is in Sc(n, k), then G((Tk, ωk)) contains a
cycle. Thus, the induced subdivision tree has at least one non-leaf subdivision vertex.
Applying Lemma 4 gives the claim. �	

Next, we show that the contribution of S¬no(n, k) is also negligible.

Proposition 6 We have,

|S¬no(n, k)| = O
((

2

e

)n

nn+2k−3/2
)

.
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Proof By Lemma 4, we can restrict ourselves to k-fold decorated trees (Tk, ωk)whose
induced subdivision tree has 2k leaves. Note that in these decorated trees, the network
G((Tk, ωk)) has trees below the reticulation vertices and thus does not contain a retic-
ulation vertex followed by a reticulation vertex. In addition, if G((Tk, ωk)) contains a
tree vertex followed by two reticulation vertices, then the number of such decorated
trees is (up to a constant) bounded by

n![zn] r(z)2k

(1 − r(z))4k−1−2 ;

see the explanation in the proof of Lemma 4 (where we now have � = 0). Here, the
additional −2 in the exponent of the denominator arises from the two edges below the
above tree vertex in G((Tk, ωk)) as empty sequences of phylogenetic trees are attached
to these edges in the induced subdivision tree of (Tk, ωk). This bound is

n![zn] r(z)2k

(1 − r(z))4k−1−2 = O
((

2

e

)n

nn+2k−2
)

. (3)

Likewise, if we have a shortcut in G((Tk, ωk)) (which violates the normal condition),
then we obtain the upper bound

n![zn] r(z)2k

(1 − r(z))4k−1−1 = O
((

2

e

)n

nn+2k−3/2
)

, (4)

where the additional−1 comes from the empty sequence attached to the shortcut in the
induced subdivision tree of (Tk, ωk) (which must be part of the induced subdivision
tree). Combining these two upper bounds gives the claimed result. �	

Propositions 5 and 6 provide an alternative and immediate way to asymptotically
count normal networks with a given number of reticulations (k). Although this result
is known (from Fuchs et al. (2019, 2021, 2022)) our proof here provides a more
transparent way to see why the asymptotic result holds; more importantly, it can be
extended to allow k to grow (slowly) with n (as we describe in the next section), unlike
the earlier approaches.

Let Nn,k denote the number of normal phylogenetic networks with n leaves and k
reticulation vertices.

Corollary 7 For fixed k, as n → ∞,

Nn,k ∼ 2k−1
√
2

k!
(
2

e

)n

nn+2k−1. (5)

Proof Let Ln be the number of pairs (N , T ) where N is a normal network with leaf
set [n] and k reticulation vertices, and T ∈ Tn is displayed by N (i.e. T can be
obtained by the following process: For each reticulation vertex v of N delete one
of the two incoming arcs and suppress the resulting subdivision vertex). Since any
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normal network with k reticulation vertices displays exactly 2k distinct phylogenetic
trees (Corollary 3.4 of Willson (2012)), we have:

Ln = 2k · Nn,k . (6)

In addition, by the definition of S(n, k), we have

Ln = |Sn(n, k)|.

Now, from (1) and Propositions 5 and 6, we have:

Ln ∼ 22k−1
√
2

k!
(
2

e

)n

nn+2k−1

and so, by (6):

Nn,k ∼ 2k−1
√
2

k!
(
2

e

)n

nn+2k−1,

which establishes (5), as required. �	

3 Allowing k to Grow (Slowly) with n

In order to understand the range of validity of (5) when k is allowed to grow with n,
we have to make the dependence on k in theO term in Proposition 5 and Proposition 6
explicit. Since both of these propositions crucially depend on Lemma 4, we first revisit
the proof of this lemma.

From now on, we assume that k = o(n1/3). This will turn out to be the range of k
for which we can show that (5) is still valid.

By the proof of Lemma 4, the number of k-fold decorated trees (Tk, ωk) on [n]
with a fixed induced subdivision tree having 2k − � leaves and � non-leaf subdivision
vertices is bounded by

n![zn] r(z)2k−�

(1 − r(z))4k−1−�
= O

((
2

e

)n

nn+2k−1−�/2
)

. (7)

Our first goal is to sharpen this to

n![zn] r(z)2k−�

(1 − r(z))4k−1−�
= O

((
2

e

)n nn+2k−1−�/2

�(2k − 1/2 − �/2)

)
, (8)

where the implied constant in O is absolute (i.e., it does not dependent on �, k, and
n). In this section, O will always be assumed to have this property.

In order to prove this, we start with a lemma.
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Lemma 8 For α > 0 with α = o(
√
n), we have the following uniform bound

[zn](1 − z)−α = O
(
nα−1

�(α)

)
.

Proof By the binomial theorem,

[zn](1 − z)−α =
(
n + α − 1

n

)
= �(n + α)

�(n + 1)�(α)
. (9)

Next, by Stirling’s formula for the Gamma function

�(x) =
( x
e

)x
√
2π

x

(
1 + O

(
1

x

))
, (x → ∞),

we have:

log
�(n + α)

�(n + 1)
= log�(n + α) − log�(n + 1)

= (n + α) log(n + α) − (n + α) − 1

2
log(n + α) + 1

2
log(2π)

− (n + 1) log(n + 1) + n + 1 + 1

2
log(n + 1) − 1

2
log(2π)

+ O(n−1)

= (α − 1) log n + (n + α − 1/2) log(1 + α/n) − α + O(n−1)

= (α − 1) log n + O
(

α2 + 1

n

)
.

Thus,
�(n + α)

�(n + 1)
= nα−1

(
1 + O

(
α2 + 1

n

))

and combining this with (9) yields the claim. �	
Now, to establish (8), we use r(z) = 1 − √

1 − 2z and the binomial theorem:

[zn] r(z)2k−�

(1 − r(z))4k−1−�
=

2k−�∑

j=0

(
2k − �

j

)
(−1) j [zn](1 − 2z)−2k+1/2+�/2+ j/2.

By the lemma, the j-th term becomes

O
((

2k − �

j

)
2n

n2k−3/2−�/2− j/2

�(2k − 1/2 − �/2 − j/2)

)

= O
(

2nn2k−3/2−�/2

�(2k − 1/2 − �/2)

�(2k − 1/2 − �/2)

�(2k − 1/2 − �/2 − j/2)

(2k/
√
n) j

j !
)
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= O
(

2nn2k−3/2−�/2

�(2k − 1/2 − �/2)

(2k/ 3
√
n)3 j/2

j !
)

,

where, in the second-last step, we used:

�(2k − 1/2 − �/2)

�(2k − 1/2 − �/2 − j/2)
= O((2k) j/2),

which follows from standard estimates for the ratio of gamma functions. Summing
the above estimate over j gives

[zn] r(z)2k−�

(1 − r(z))4k−1−�
= O

(
2nn2k−3/2−�/2

�(2k − 1/2 − �/2)
e(2k/ 3√n)3/2

)

= O
(

2nn2k−3/2−�/2

�(2k − 1/2 − �/2)

)
.

Multiplying this by the asymptotics of n! gives (8).
Next, we have to multiply (8) by the number of induced subdivision trees with

2k − � leaves and � non-leaf subdivision vertices which is given by:

(
2k

�

)
r2k−�

(4k − 2� − 1) · · · (4k − � − 2)

k!
as they are enumerated by starting with a phylogenetic tree on 2k−� leaves, choosing
� non-leaf subdivision vertices on the edges of this tree, and redistributing the labels.
Note that

(
2k

�

)
r2k−�

(4k − 2� − 1) · · · (4k − � − 2)

�(2k − 1/2 − �/2)k! � 4�k�

�!k!
�(2k + 1)

�(2k − 1/2 − �/2)

C2k−�−1

22k−�−1 .

Here, we used that
(4k − 2� − 1) · · · (4k − � − 2) � 4�k�

and rn = n!Cn−1/2n−1, where Cn denotes the n-th Catalan number:

Cn = 1

n + 1

(
2n

n

)
∼ 4n√

πn3
.

Therefore, the above bound becomes:

4�k�

�!k!
�(2k + 1)

�(2k − 1/2 − �/2)

C2k−�−1

22k−�−1 = O
(
4k(2k)3�/2k3/2

�!k!(2k − �)3/2

)
, (10)

where we used
�(2k + 1)

�(2k − 1/2 − �/2)
= O

(
2�/2k(�+3)/2

)
.
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Combining (8) and (10), the bound in Lemma 4 can be sharpened to

Sn,k,� = O
(

(2k)3�/2k3/2

�!(2k − �)3/2

4k

k!
(
2

e

)n

nn+2k−1−�/2
)

.

The bound in Proposition 5 for |Sc(n, k)| is obtained by summing the bound for
Sn,k,� for � from 1 to 2k − 1. Consequently,

|Sc(n, k)| = O
(
c(n, k)

4k

k!
(
2

e

)n

nn+2k−1
)

,

where

c(n, k) := k3/2
2k−1∑

�=1

(2k/ 3
√
n)3�/2

�!(2k − �)3/2
.

We break the above sum into two parts according to whether � < k or � � k. For the
first part, we get

k3/2
k−1∑

�=1

(2k/ 3
√
n)3�/2

�!(2k − �)3/2
= O

(
k−1∑

�=1

(2k/ 3
√
n)3�/2

)
= O

(
(2k/ 3

√
n)3/2

)
= o(1),

where, in the last step, we used that k = o(n1/3). For the second part, we have

k3/2
2k−1∑

�=k

(2k/ 3
√
n)3�/2

�!(2k − �)3/2
= O

(
k3/2(2k/ 3

√
n)3k/2

)
= o(1),

where the last step is clear for bounded k and holds for k → ∞ because 4k � 3
√
n for

large k (again by k = o(n1/3)). Thus, we have

|Sc(n, k)| = o

(
4k

k!
(
2

e

)n

nn+2k−1
)

(11)

for our range of k.
Next, we consider the estimate of Proposition 6 which, as explained in the proof,

was obtained by estimating separately the number of k-fold decorated trees (Tk, ωk)

on [n] with G((Tk, ωk)) a phylogenetic network whose induced subdivision tree has
(i) at least one non-leaf subdivision vertex or otherwise (ii) two outgoing edges of a
tree node where no sequence is attached to or (iii) one edge where no sequence is
attached to in the induced subdivision tree.

The first case is treated as above. For the second and third cases, we use the estimate
(3) and (4) instead of (7), where both bounds have to be multiplied by k which is the
upper bound of the number of tree nodes and edges in the induced subdivision tree,
respectively. Moreover, we can use the same constant as in (10) but with � = 0
and multiplied by �(2k − 1/2)/�(2k − 3/2) = O(k) in the second case and by
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�(2k − 1/2)/�(2k − 1) = O(k1/2) in the third case. Overall, for the second case,
this gives

O
(
k2

n

4k

k!
(
2

e

)n

nn+2k−1
)

= o

(
4k

k!
(
2

e

)n

nn+2k−1
)

and for the third case

O
(
k3/2√
n

4k

k!
(
2

e

)n

nn+2k−1
)

= o

(
4k

k!
(
2

e

)n

nn+2k−1
)

. (12)

Combining these bounds with the bound for the first case, we can improve the result
of Proposition 6 to

|S¬no(n, k)| = o

(
4k

k!
(
2

e

)n

nn+2k−1
)

(13)

for k = o(n1/3).
Now, by combining (11), (13), and (1) (which holds for our range of k; see

Remark 2), we see that (5) holds even if k is allowed to grow moderately with n,
namely, for k = o(n1/3).

4 Hybridization Networks

A hybridization network is a tree-child network on leaf set X , which has at least
one temporal ordering (or ‘ranking’). This means that one can assign a real-valued
temporal date (T (v)) to each vertex v of the network so that (i) if (u, v) is a tree edge
then T (u) < T (v) and (ii) if v is a reticulation vertex with parents u and w then
T (u) = T (v) = T (w). Hybridization networks are particularly relevant to biology,
since they model species’ evolution that comprises two processes: binary speciation
events (as in phylogenetic trees), and events where two contemporaneous species
hybridize to give rise to a new (hybrid) species (see e.g., Marcussen et al. (2014)).

It can easily be shown that every hybridization network is normal (see e.g.,
Proposition 10.12 of Steel (2016)); however, the converse does not hold, as Fig. 2
shows.

Hybridization networks also correspond to the class of tree-child networks that can
be ‘ranked’ in the sense described in Bienvenu et al. (2022). However, although there
is a simple, exact, and explicit formula for counting ranked tree-child networks with
n leaves and k reticulation vertices, the exact enumeration of hybridization networks
is more complex.

Let Hn,k denote the number of hybridization networks with n leaves and k reticula-
tion vertices. Hn,1 is just the number of normal networks with one reticulation vertex,
and so H4,1 = 54; see (14). In addition, H4,2 = 36, compared with the 48 possible
normal networks with n = 4, k = 2 (see Fig. 2).
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Fig. 2 The three shapes of normal networks on n = 4 leaves with k = 2 reticulation vertices. Cases (i)
and (ii) correspond to hybridization networks, and Case (iii) corresponds to a normal network that is not a
hybridization network. There are 12 distinct phylogenetic networks of shape (i), 24 of shape (ii), and 12 of
shape (iii)

4.1 Enumeration of Hn,k for k = 1, 2

Hn,1 coincides with the number of normal networks with one reticulation vertex and
thus:

Hn,1 = Nn,1 = 1

2
n![zn]

(
r(z)

1 − r(z)

)3

= 1

2
[(2n+1)!!+3(2n−1)!!]−3n!2n−1, (14)

where r(z) = 1 − √
1 − 2z; see Zhang (2019) or Fuchs et al. (2021).

For k = 2, we have the following result.

Proposition 9 We have,

Hn,2 = (2n − 1)!!(n3 + 9n2 − 16n − 12) − 3n!2n(n2 − 4).

Proof The proof uses the decomposition of a network into bridgeless components from
Bouvel et al. (2022). First, we recall the definition of a bridgeless component from
graph theory: a bridgeless component of a graph G is a maximal induced subgraph of
G without cut edges (bridges). Let H2 denote the set of hybridization networks with
exactly 2 reticulation vertices. Consider the exponential generating function for Hn,k

defined by:

Hk(z) =
∞∑

n=1

Hn,k
zn

n! .

Any hybridization network N ∈ H2 satisfies exactly one of the following cases (for
details, we refer to the Appendix):

Case 1: The root of N belongs to a bridgeless component which contains 0 retic-

ulation vertices. This contributes H2(z)r(z) + H1(z)2

2 to the exponential generating
function of H2.

Case 2: The root of N belongs to a bridgeless component which contains exactly

one reticulation vertex. This contributes H1(z)
r(z)2

(1−r(z))3
+ 1

2H1(z)
r(z)2

(1−r(z))2
to the

exponential generating function ofH2.
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Case 3: The root of N belongs to a bridgeless componentwhich contains exactly two

reticulation vertices. This contributes 1
2

r(z)4

(1−r(z))4
+ r(z)4

(1−r(z))5
+ 7

2
r(z)5

(1−r(z))5
+ 5

4
r(z)6

(1−r(z))6

to the exponential generating function of H2.
Then, for k = 2, we have:

H2(z) = H2(z)r(z) + H1(z)2

2
+ H1(z)

r(z)2

(1 − r(z))3
+ 1

2
H1(z)

r(z)2

(1 − r(z))2

+ 1

2

r(z)4

(1 − r(z))4
+ r(z)4

(1 − r(z))5
+ 7

2

r(z)5

(1 − r(z))5
+ 5

4

r(z)6

(1 − r(z))6

and consequently,

H2(z) = H1(z)2

2(1 − r(z))
+ H1(z)

r(z)2

(1 − r(z))4
+ 1

2
H1(z)

r(z)2

(1 − r(z))3

+ 1

2

r(z)4

(1 − r(z))5
+ r(z)4

(1 − r(z))6
+ 7

2

r(z)5

(1 − r(z))6
+ 5

4

r(z)6

(1 − r(z))7
,

where (from (14)):

H1(z) = 1

2

r(z)3

(1 − r(z))3
.

H2(z) can be rewritten as:

H2(z) = 15

8
(1 − r(z))−7 − 6(1 − r(z))−6 + 27

8
(1 − r(z))−5 + 9(1 − r(z))−4

− 123

8
(1 − r(z))−3 + 9(1 − r(z))−2 − 15

8
(1 − r(z))−1.

By using this equation, it can be shown that:

Hn,2 = n![zn]H2(z) = (2n − 1)!!(n3 + 9n2 − 16n − 12) − 3n!2n(n2 − 4).

This proves the claim. �	

By Proposition 9, we have H4,2 = 36, H5,2 = 1890, and H6,2 = 66960.
By comparison, the number Nn,2 of normal networks with two reticulation vertices

is given (from Fuchs et al. (2021)) by:

Nn,2 = 1

3
(2n − 1)!!(3n − 4)(n2 + 11n + 6) − n!2n(3n2 + 2n − 8).

It is readily verified that Hn,2/Nn,2 ∼ 1 as n → ∞.

Thus it is of interest to consider the (asymptotic) number of normal networks with
two reticulation vertices that are not hybridization networks.
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From the above expressions we have:

Nn,2 − Hn,2 ∼ 2
√
2

3

(
2

e

)n

nn+2, as n → ∞.

4.2 Asymptotics of Hn,k

We start with a useful notion.We call two reticulation edges of a phylogenetic network
collinear if a vertex of one of them is connected by a tree path (i.e. a path consisting
just of tree edges) to a vertex of the other one. For example, in Fig. 2(iii), the two
parallel reticulation edges that slope downwards to the right are collinear.

Using this notion, we have the following result.

Lemma 10 Let (Tk, ωk) be a k-fold decorated tree on [n] such that G((Tk, ωk)) is
a normal network which has no collinear reticulation edges. Then, G((Tk, ωk)) is a
hybridization network.

Proof The proof proceeds by induction on k. The claim obviously holds for k = 0,
as, in this case, G((Tk, ωk)) is just a tree, and any tree is a hybridization network.

Now suppose that the claim holds for k − 1; we are going to establish it for k. Pick
a reticulation vertex of G((Tk, ωk)). Note that, by assumption, the three subgraphs
induced by the descendant set of the reticulation vertex as well as the descendant sets
of the two parents of the reticulation vertex are all trees. Remove them together with
the reticulation vertex from G((Tk, ωk)). The remaining structure corresponds to a
(k − 1)-fold decorated tree (T ′

k−1, ω
′
k−1) on a set of leaves that consist of a subset

of [n] together with two new leaves that correspond to the parents of the removed
reticulation vertex and which receive new labels (say, n + 1, n + 2). By applying the
induction hypothesis, we obtain that G((T ′

k−1, ω
′
k−1)) is a hybridization network, i.e.,

it can be drawn from top to bottom such that its events are in chronological order.
Next, find the two extant lineages leading to n + 1 and n + 2 and attach the deleted
reticulation event, which becomes the next event in the temporal order. Moreover,
attach to the leaves with label n + 1 and n + 2 the two deleted subtrees and below
the re-attached reticulation vertex the third deleted subtree. Clearly, the events of the
three subtrees can be ordered such that G((Tk, ωk)) becomes a hybridization network.
This proves the claim. �	

Now, consider the set Sno(n, k), which we partition into the set which contains
hybridization networks and the set which does not:

Sno(n, k) = Shyb(n, k) 	 S¬hyb(n, k).

The cardinality of the set of hybridization networks again satisfies the asymptotics in
(1) since we have the following result.

Proposition 11 We have,

|S¬hyb(n, k)| = O
((

2

e

)n

nn+2k−3/2
)

.
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Proof As in the proof of Proposition 6, we can restrict ourselves to k-fold decorated
trees (Tk, ωk) whose induced subdivision tree has 2k leaves. In addition, if (Tk, ωk) ∈
S¬hyb(n, k), then, by Lemma 10, G((Tk, ωk)) has collinear reticulation edges. Clearly,
if one starts from an induced subdivision tree with 2k leaves, such a network can only
be obtained from it (using the procedure from the proof of Lemma 5) by leaving at
least one edge empty (i.e., by not attaching a sequence of subtrees to it). Thus, this
situation is akin to the case of shortcuts in the proof of Proposition 6, which gave the
bound (4). Since this is also the bound claimed in the current result, we are finished. �	

In summary, we have the following result.

Theorem 12 For fixed k, as n → ∞,

Hn,k ∼ 2k−1
√
2

k!
(
2

e

)n

nn+2k−1. (15)

In addition, this asymptotic result is still valid in the range k = o(n1/3).

Proof The claimed expansion (15) follows from (1) combined with Proposition 5,
Proposition 6, and Proposition 11. Moreover, that (15) holds for k = o(n1/3) is proved
by making the dependence on k in the constant of Proposition 11 explicit, which is
handled as in Sect. 3 (as explained in the proof of Proposition 11, the situation is akin
to the case of shortcuts in the proof of Proposition 6, which gave the bound (12)). �	

5 Concluding Comments

In this paper, we have investigated the enumerative aspects of constructing a phyloge-
netic network by placing arcs between the edges of the tree. Provided that the number
of arcs placed (k) is constant or grows slowly enough with the number of leaves (n),
the directed graph we construct is almost surely a phylogenetic network and, in addi-
tion, it (almost surely) belongs to the much smaller class of normal networks. This
result, combined with a combinatorial property of normal networks, allows an asymp-
totic enumeration of this class. Our approach provides an explicit interpretation of the
various terms in the asymptotic formula, and extends earlier results by allowing k to
depend on n. We also show that the same asymptotic results apply for the even smaller
subclass of hybridization networks.

Our analysis requires k to grow no faster than o(n1/3) and a natural question is
whether the bound k = o(n1/3) might be improved. For example, k = o(n1/2) seems
to be the range where the corresponding result for tree-child networks holds; see Pons
and Batle (2021). Is the same true for normal and/or hybridization networks? Or do
they behave differently?

We end with some general observations. First, it is well known that any normal
network has atmost n−2 reticulation vertices, and byTheorem5.1 ofMcDiarmid et al.
(2015), almost all normal networkswith n leaves have (1+o(1))n reticulation vertices.
Thus the two classes of networks we are enumerating are not representative of normal
networks selected uniformly at random. Nor are our normal networks representative
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of a randomly chosen tree-child network with n leaves, since the proportion of the
latter that are normal tends to 0 as n grows (again by results in McDiarmid et al.
(2015)). Nevertheless, almost all of the tree-child networks (with k (fixed) reticulation
vertices) that arise under the process we study will be normal networks (since this
class of tree-child networks follows the same asymptotic law (Fuchs et al. 2019)).

6 Appendix

It was mentioned in Sect. 4.1 that any hybridization network N ∈ H2 satisfies exactly
one of the following three cases: (1) The root of N belongs to a bridgeless component
which contains 0 reticulation vertices; (2) The root of N belongs to a bridgeless
component which contains exactly 1 reticulation vertex; (3) The root of N belongs
to a bridgeless component which contains exactly 2 reticulation vertices. Each case
makes corresponding contributions to the exponential generating function of H2.

In this section, we will explain more carefully how to derive the exponential gen-
erating function of H2 by considering these three cases; we will follow the approach
from Bouvel et al. (2022).

A hybridization network N is said to be level-k if the number of reticulation vertices
contained in any bridgeless component of N is at most k.

For any bridgeless component B with kB � k reticulation vertices of a level-k
hybridization network N , there exist at least two bridges of N attached to B because
without this restriction, such networks would have an unbounded number of internal
vertices resulting in an infinite number of these networks.

For an arbitrary hybridization network N ∈ H2, considering the bridgeless com-
ponent containing the root ρ denoted as Bρ , suppressing any vertices of in-degree
and out-degree 1, the resulting directed multi-graph is called a generator. A generator
induced from Bρ may have 0, 1, or 2 reticulation vertex (vertices) and is called a level-
0, level-1 or level-2 generator. We call non-terminal edges and vertices of out-degree
0 of a level-k generator sides. For each level, there is a finite number of generator(s).
Therefore, the three cases can be considered as: (1) The root of N belongs to a level-0
generator; (2) The root of N belongs to a level-1 generator; (3) The root of N belongs
to a level-2 generator.

We will now consider these three cases. Let H1 denote the set of hybridization
networks with exactly 1 reticulation vertex, and H0 denote the set of hybridization
networks with 0 reticulation vertices.

6.1 Case 1

For any N ∈ H2 such that the root of N belongs to a level-0 generator, the root has
two children. They satisfy one of two subcases:

• One child is the root of a network from H2 and the other child is the root of
a network from H0, see case 1.1 in Fig. 3. This contributes H2(z)r(z) to the
exponential generating function ofH2.
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Fig. 3 (case 1.1): A binary root vertex with two children that are roots of networks of H2 and H0. (case
1.2): A binary root vertex with two children that are roots of networks from H1 whose left-to-right order
is irrelevant

Fig. 4 (case 2.1): The child of the reticulation vertex of the level-1 generator containing the root is attached
to H0. A sequence of at least one network from H0 is attached to the red side. There exists exactly one
network from H1 attached to the blue side which also may or may not contain level-0 networks attached
to it. (case 2.2): The child of the reticulation vertex of the level-1 generator containing the root is attached
to H1. A sequence of at least one networks from H0 is attached to each red side whose left-to-right order
is irrelevant (color figure online)

• Both children are the root of networks ofH1; see case 1.2 in Fig. 3. This contributes
H1(z)2

2 to the exponential generating function ofH2. Here, the factor 1/2 is because
the left-to-right order is irrelevant.

Overall, Case 1 contributes H2(z)r(z) + H1(z)2

2 to the exponential generating
function of H2.

6.2 Case 2

Any N ∈ H2 such that the root of N belongs to a level-1 generator satisfies one of
two subcases:

• The child of the reticulation vertex is the root of a network fromH0 as illustrated
in case 2.1 of Fig. 4.
Exactly one level-1 network is attached to the blue side and there may or may
not be level-0 network(s) attached to the blue side. Suppose that there are
k � 1 network(s) that are attached to the blue side, exactly one of them is the
level-1 network and the rest are level-0 networks. The level-1 network has k
options to be placed, therefore the networks attached to the blue side contribute∑∞

k=1 kH1(z)r(z)k−1. A sequence of at least one network of H0 is attached to
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Fig. 5 (case 3.1): The child of the bottom reticulation vertex is attached to H0. The three red sides are
non-empty while the two green sides can be empty. (case 3.2): Each child of the reticulation vertices is
attached toH0. The two green sides can be empty. There are three subcases which depend on whether there
are networks attached to S1, S2, S3, S4. The top-to-bottom and left-to-right orders are irrelevant. (case 3.3):
The child of the bottom reticulation vertex is attached toH0. The four red sides are non-empty. The green
side can be empty. The left-to-right order is irrelevant. (case 3.4): Each child of the reticulation vertices is
attached toH0. The two red sides are non-empty. The two green sides can be empty. There are two subcases
which depend on whether there are networks attached to S1 and S2 (color figure online)

the red side (otherwise this is a shortcut) and thus contributes r(z)
1−r(z) . Case 2.1

contributes
∑∞

k=1 kH1(z)r(z)k−1r(z) r(z)
1−r(z) = H1(z)

r(z)2

(1−r(z))3
.

• A sequence of at least one network from H0 is attached to each red side, whose

left-to-right order is irrelevant and contributes 1
2H1(z)

(
r(z)

1−r(z)

)2
as seen in case

2.2 of Fig. 4.

Overall, Case 2 contributes H1(z)
r(z)2

(1−r(z))3
+ 1

2H1(z)
(

r(z)
1−r(z)

)2
to the exponential

generating function of H2.

6.3 Case 3

Any N ∈ H2 such that the root of N belongs to a level-2 generator satisfies one of the
four subcases:

• Case 3.1: The child of the bottom reticulation vertex is the root of a network from
H0 as seen in case 3.1 of Fig. 5.
All the three red sides cannot be empty, which means that at least one network
from H0 is attached to them, otherwise the tree-child network and normal net-
work conditions are violated. The two green sides can be empty, which means
there may or may not be networks from H0 attached to them. This contributes

r(z)
(

r(z)
1−r(z)

)3 (
1

1−r(z)

)2
.

• Case 3.2: The children of the reticulation vertices are the roots of networks from
H0 as seen in case 3.2 of Fig. 5 whose left-to-right and top-to-bottom orders are
irrelevant. We consider the following situations:
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– S1, S2, S3, S4 are all non-empty. The two green sides can be empty. This
contributes

1

4︸︷︷︸
symmetry

r(z)2
(

r(z)

1 − r(z)

)4 (
1

1 − r(z)

)2

.

– Exactly one of S1, S2, S3, S4 is empty. The two green sides can be empty. This
contributes

4︸︷︷︸
4 cases

· 1

4︸︷︷︸
symmetry

r(z)2
(

r(z)

1 − r(z)

)3 (
1

1 − r(z)

)2

= r(z)2
(

r(z)

1 − r(z)

)3 (
1

1 − r(z)

)2

.

– S1, S2 are empty, while S3, S4 are non-empty and vice versa. The two green
sides can be empty. This contributes

2︸︷︷︸
2 cases

· 1

4︸︷︷︸
symmetry

r(z)2
(

r(z)

1 − r(z)

)2 (
1

1 − r(z)

)2

= 1

2

(
r(z)

1 − r(z)

)4

.

• Case 3.3: The child of the bottom reticulation vertex is the root of networks from
H0 as seen in case 3.3 of Fig. 5. All four red sides cannot be empty. The green side
can be empty. The left-to-right order is irrelevant. This contributes

1

2︸︷︷︸
symmetry

r(z)

(
r(z)

1 − r(z)

)4 (
1

1 − r(z)

)
.

• Case 3.4: The children of the reticulation vertices are the roots of networks from
H0 as seen in case 3.4 of Fig. 5. We consider two situations:

– Either S1 or S2 is empty. The two red sides cannot be empty otherwise they
are shortcuts and the two green sides can be empty. This contributes

2︸︷︷︸
2 cases

r(z)2
(

r(z)

1 − r(z)

)3 (
1

1 − r(z)

)2

.
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– S1 and S2 are both non-empty. The two red sides cannot be empty. The two
green sides can be empty. This contributes

r(z)2
(

r(z)

1 − r(z)

)4 (
1

1 − r(z)

)2

.

In general, Case 3 contributes 1
2

r(z)4

(1−r(z))4
+ r(z)4

(1−r(z))5
+ 7

2
r(z)5

(1−r(z))5
+ 5

4
r(z)6

(1−r(z))6
to

the exponential generating function of H2.
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