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does not adequately describe the M 3/4 scaling
of whole-organism metabolism for the species
in our study because they span different phys-
iological groups with different normalization
constants (4, 16) (fig. S1). Hence, the uniform
abundance scaling documented here across all
species indicates that, at any particular trophic
level, populations of similarly sized species in dif-
ferent physiological groups flux different amounts
of energy: endotherms > vertebrate ectotherms >
parasitic or free-living invertebrates (fig. S1).

The uniform scaling of abundance found here
has another general implication—that of “pro-
duction equivalence.” Specifically, species at the
same trophic level produce biomass at the same
average rate across all body sizes and functional
groups. This occurs because, in contrast to meta-
bolic rates, a single line can describe the M 3/4

scaling of individual biomass production, Pind,
for organisms of different physiological groups
(31) (fig. S1). Consequently, the population pro-
duction rate equals Ppop = PindN, which scales as
M3/4M –3/4 = M 0. Indeed, estimating population
production for the species in the three estuaries
supports the existence of this invariant biomass
production with body size (Fig. 4 and fig. S1)
(11). Thus, although population energy flux (and,
consequently, demand on resources) may vary
among physiological groups, opposing differences
in production efficiency among these groups cause
population biomass production to scale invariant
of body size across all groups. Because production
reflects biomass availability to consumers, pro-
duction equivalence indicates a comparable eco-

logical relevance for any single species within a
trophic level, regardless of body size or functional
group affiliation: invertebrate or vertebrate, ecto-
therm or endotherm, free-living or parasitic.

Accommodating parasitic and free-living
species into a common framework highlights the
utility of Eq. 3 to incorporate body size, temper-
ature, and food-web information into ecological
scaling theory in a simple and generally applica-
ble way. Equations 3 and 4 may allow testing of
the generality of the findings documented here for
any ecosystem and any form of life.
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Terraces in Phylogenetic Tree Space
Michael J. Sanderson,1* Michelle M. McMahon,2 Mike Steel3

A key step in assembling the tree of life is the construction of species-rich phylogenies from
multilocus—but often incomplete—sequence data sets. We describe previously unknown structure
in the landscape of solutions to the tree reconstruction problem, comprising sometimes vast
“terraces” of trees with identical quality, arranged on islands of phylogenetically similar trees.
Phylogenetic ambiguity within a terrace can be characterized efficiently and then ameliorated by
new algorithms for obtaining a terrace’s maximum-agreement subtree or by identifying the
smallest set of new targets for additional sequencing. Algorithms to find optimal trees or estimate
Bayesian posterior tree distributions may need to navigate strategically in the neighborhood of large
terraces in tree space.

Phylogenetic tree space, the collection of all
possible trees for a set of taxa, grows ex-
ponentially with the number of taxa, cre-

ating computational challenges for phylogenetic
inference (1). Nonetheless, phylogenetic trees
and comparative analyses based on them are
growing larger, with several exceeding 1000 spe-

cies [e.g., (2)] and a recent one exceeding 50,000
(3). Understanding the landscape of tree space
is important because heuristic algorithms for
inferring trees using maximum likelihood (ML),
maximum parsimony (MP), and Bayesian infer-
ence navigate through parts of this space guided
by notions of its structure [e.g., (4)]. Moreover,
analyses that use phylogenies to study evolution-
ary processes typically sample from tree space
to obtain a good statistical “prior” distribution
of phylogenetic relationships used in subsequent
comparative analyses, but the design of sam-
pling strategies hinges on the structure of tree
space (5).

An important advance in understanding tree
space was the formulation of the concept of “is-
lands” of trees with similar MP or ML optimality
scores (6, 7). Trees belong to the same island if
they are near each other in tree space and have
optimality scores of L or better with respect to
some data matrix. Distance in tree space can be
measured by the number of rearrangements re-
quired to convert one tree to another. Nearest
neighbor interchanges (NNIs), for example, are
rearrangements obtained by swapping two sub-
trees around an internal branch of a tree. Conflict-
ing signals or missing data can result in multiple
large tree islands, separated by “seas” of lower-
scoring trees, a landscape that can only be char-
acterized by lengthy searches through tree space
[e.g., (8)]. Empirical studies of phylogenetic tree
islands flourished in the context of the single-
locus data sets that were common in the 1990s.
However, maintaining the same level of accuracy
in the larger trees studied today requires com-
bining multiple loci (9). The most widely used
protocol for data combination is concatenation of
multiple alignments of orthologous sequences, one
next to another, analyzed as one “supermatrix,”
a procedure justified when gene tree discordance
is low between loci (10). Notably, a hallmark of
almost all large supermatrix studies is a sizable
proportion of missing entries.
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Consider a recent analysis (11) of deep ar-
thropod phylogeny, which combined 129 align-
ments of separate loci obtained largely from
expressed sequence tag libraries into a single
supermatrix for 117 taxa. We represent such a
collection of k multiple sequence alignments,
Di, which are concatenated, as a supermatrix,
D, of k loci by n taxa. Loci for which fewer than
n taxa have been sampled contain missing data
(35% in the arthropod study). Let Yi be the set of
taxon labels that have been sampled for locus i,

with the entire label set X ¼ ∪k
i¼1

Yi, and n = | X |.

A taxon coverage pattern, S ¼ fY1,...,Ykg, is a
collection of subsets of X. Consider any binary

tree T on X. Tree T displays a binary phylo-
genetic tree, T ′, if T jY ¼ T ′, where the vertical
bar means the subtree induced by restricting
T to just the taxa in Y. If T displays the k subtrees,
T jY1,…,T jYk , then it is a parent tree of these
subtrees. If T is the only such tree, the subtrees
define T, and S is decisive for T (12). LetL(D, T )
be a scoring function such as log likelihood,
giving the score, l 0, of tree T based on a sequence
alignment D, and (implicitly) a model of evo-
lution. Then

L(D,T ) ¼
Xk

i¼1

L(Di,(T jYi)) ð1Þ

This holds for MP because all sites are scored
separately but also holds for partitioned models
in ML [(13); e.g., RAxML (14); supporting on-
line text] and Bayesian inference [e.g., MrBayes
(15)]. It follows that any other tree that also
displays T |Y1, ..., T | Yk has the same score, l 0.
This leads to a fundamental observation:

The set of all parent trees of T |Y1, ..., T | Yk
has the same L-score as tree T, namely, l 0. We
call this set a terrace.

All trees on a terrace are distinct from each
other, but they are indistinguishable in two im-
portant respects: They display the same set of
subtrees, and they have the same optimality score.
Key properties of terraces can be understood
with the theory of phylogenetic supertrees (trees
constructed from collections of smaller trees). In
the following we assume that each of the k in-
duced subtrees can be rooted [for example, if
there is at least one taxon, a reference taxon,
sampled for all k loci (10)]. First, a terrace is part
of a tree island. This follows from (16), which

shows that trees in a terrace are all connected by
NNI tree rearrangements in the same way that
trees in an island are. Because they all have the
same score, they must form at least a subset of
some tree island whose threshold score, L, is
worse than theirs.

Second, the trees in a terrace can be enu-
merated with an algorithm that generates all par-
ent trees of a set of compatible subtrees (17). The
latter are induced by any tree, T, from the terrace,
together with the taxon coverage pattern, S. A
search through tree space checking optimality
scores is unnecessary, because the trees can be
built directly with S and T. This is useful because
the number of trees on a terrace can scale ex-
ponentially with the number of taxa in the dis-
played subtrees (18). Third, testing if two trees
are on the same terrace can be done quickly be-
cause it merely requires tests of tree equality of
the induced subtrees (10, 19). Finally, the trees in
a terrace can be summarized by a special con-
sensus tree used in the supertree literature [the
BUILD tree (20)] with three convenient proper-
ties: (i) It displays all the individual loci’s induced
subtrees; (ii) it is the Adams consensus tree of all
trees on the terrace (21); and (iii) it can be con-
structed in polynomial time (19). Figure 1 illus-
trates these ideas with a small example.

We examined three recently published large
supermatrix studies (11, 22, 23) (Table 1) that have
typical levels of partial taxon coverage (52 to
66%), but differ with respect to fractional de-
cisiveness, an index tied to the impact of missing
data on tree construction (10, 12). In an analysis
of arthropods (11) with 129 loci and a very high
fractional decisiveness (table S2), the 14 terraces
found had just a single tree on each. However, in

Lj Ap Aa Es La Cc

optimal tree

Cercis chinensis
Erythrina speciosa
Amorpha apiculata

Lotus japonicus
Lotononis acuticarpa

Aeschynomene pfundii

m
at

K

X

X
X

X

X
X

X
X

rb
cL

terrace of 13 equally optimal trees

taxon coverage matrix

Lj Ap Aa Cc Lj Es La Cc

induced subtrees

matK rbcL

Lj Ap Es La Aa Cc

BUILD tree

Fig. 1. Terrace in tree space for six species of the
angiosperm clade Leguminosae and two loci, matK
and rbcL (10). Taxon coverage is denoted by an
“X” when sequence data are present. The optimal
tree, an ML tree found using a partitioned model
in RAxML (ln L = −6709.8), induces two locus-
specific subtrees. Twelve additional trees for these
six taxa also display these subtrees, together com-
prising a terrace of 13 equally optimal trees (labels
and outgroup removed from trees on terrace). The
BUILD tree (20) is a consensus of all trees on the
terrace.

Table 1. Characteristics of data sets and their terraces.

Taxon/study Arthropods (11) Grasses (22) Colubrid snakes (23)

Number of taxa 117 298 767
Number of loci 129 3 5
Number of sites 37,476 5074 5814
Coverage density 0.65 0.66 0.52

Terraces

ML optimal tree

Terrace size 1 61.2 million 2205

ML suboptimal trees

Number found in 50
replicate searches

13 49 49

Smallest terrace size 1 893,025 315
Largest terrace size 1 >1 billion 33,075

MP optimal trees
Number found 1 8 8
Smallest terrace size 1 11,907 6615
Largest terrace size 1 4.1 million 6615
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analyses with more taxa, fewer loci, lower de-
cisiveness, but about the same fraction of miss-
ing data, terraces were much larger, ranging from
hundreds to billions of trees in likelihood and
parsimony searches (Table 1). Irrespective of ter-
race size, we could efficiently make the BUILD
tree for each terrace without heuristic searches
through tree space (e.g., running times of just
seconds for terraces with ~100 million trees).

Exploring the position of terraces in tree is-
lands is challenging because it involves searching
tree space. However, a sense of the structure of an
island in the immediate neighborhood of its peak
can be obtained relatively easily by examining
trees one rearrangement away, calculating their
likelihood scores, and determining the size and
number of terraces present. For the grass data
(22), the ML tree is on a terrace of 61 million
trees, and the tree itself is connected to 590 trees
one NNI rearrangement away. Of these, 198 trees
have a likelihood score within 5.0 log likelihood
units of the ML tree, which we use as a cutoff for
defining an island (10), and these comprise 168
distinct terraces the sizes of which range from
8.75 million to 428 million trees, or 1.1 × 1010

trees in all (Fig. 2). The island’s structure is com-
plicated by a broad plateau below the ML tree
consisting of both large and small terraces with
nearly equal likelihood scores.

The multiplicity of equally good trees in ter-
raced landscapes poses obstacles to downstream
comparative studies in ecology and evolutionary
biology. However, a useful reduction in ambigu-
ity can be obtained via a terrace’s maximum-
agreement subtree (MAST), which is a precise
phylogenetic hypothesis on a smaller set of taxa.
Although the MASTcan be found in polynomial
time when the input trees are binary (24), this

may be infeasible in the present setting where
there can be an exponentially large number of
trees on a terrace.

However, a more appropriate variant of this
problem can be solved efficiently (10), irrespective
of the size of the terrace. Given a set of compatible
rooted binary input trees, T1,…, Tkwith label sets
Y1, …, Yk; X ≡ Y1 ∪ … ∪ Yk, the Maximum
Defining Label Set problem seeks the largest la-
bel set X* ⊆ X, such that T1jX*,...,Tk jX* to-
gether define a parent tree T * on X *. For two
loci (subtrees), this problem can be solved ex-
actly in polynomial time (10). This could not be
directly used for our data sets, the smallest of
which (22) had k = 3 loci, so we used a heuristic
strategy, solving the problem for all (three) pairs
of loci (10). Removal of just 12 of 298 taxa re-
duced the terrace size of the ML tree from 61
million trees to one. Moreover, using a variant
of this algorithm, we infer that completely se-
quencing all three loci for these 12 taxa could
reduce the terrace size to one tree for the orig-
inal larger set of taxa (10), a considerable savings
over sequencing the entire 34% of the super-
matrix that is empty.

The discovery of terraces has implications for
search strategies for building large phylogenet-
ic trees on the basis of ML, MP, and Bayesian
methods that move through tree space. Each of
these approaches spends substantial computation-
al time evaluating scores on trees that are rear-
rangements of existing trees. Yet all trees within
a terrace must have the same score, so it makes
sense to direct tree search outside of known ter-
races. In Bayesian analysis, a better estimate of
the posterior distribution might be obtained by
quickly enumerating a sample of trees on a ter-
race once the first tree is visited. The extraordi-

narily large size of some terraces, however, makes
exhaustive exploration of the islands inwhich they
are found problematic because searching between
terraces via tree rearrangements is still necessary.
Progress may require engineering a compact
data structure for the trees in a terrace to allow
computing on what may be vast collections
of reasonable trees in tree space. Otherwise, the
boundaries of islands in complex data sets will
likely remain shrouded.
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Fig. 2. Visualization of terraces in tree space near the ML tree for the grass data set (22). Areas of
terraces are proportional to number of trees and height to likelihood score. Total number of trees on all
terraces illustrated exceeds 10 billion.
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Supporting Online Material 
 
Materials and Methods 
 
Sequence data. Data for the small example of Fig. 1 was obtained from GenBank (Table 
S1). Data matrices for the three published data sets were obtained from TreeBASE (25). 
Two of these included Nexus charset statements, which allowed determination of the 
identity of each locus. For the grass data matrix (22), locus boundaries were identified by 
inspection of the alignment to see where runs of question marks and/or dashes started or 
ended. 
 
Phylogeny reconstruction. Phylogenetic trees for the three published data sets were built 
using MP with the program TNT (26) (with options xmult level=7 mxram 50).  RAxML 
(14) was used for ML in all data sets (fully partitioned model; RAxML v. 7.2.7 HPC-SSE 
recompiled to allow 129 loci for the arthropod data set). We calculated likelihoods in 
RAxML under the model GTRGAMMA using a single tree per file, because in multi-tree 
files the program treats the first tree differently, optimizing some parameters only on it. 
Models were completely partitioned between loci (-M option), including separate branch 
lengths. 
 
Nodes were not collapsed in MP searches; thus all trees obtained were binary. No non-
binary trees were found in ML searches. All trees were rooted with a reference taxon 
selected arbitrarily from the available choices (for ref. 11: Tribolium; 22: Zoysia; 23: 
Xenopeltis). A reference taxon is a taxon that has been sampled for all loci, and therefore 
can act formally as a root for the purposes of some of the rooted supertree algorithms 
described below. Trees can be rerooted after these analyses as desired. 
 
Fractional decisiveness. We report fractional decisiveness values for each of the three 
published data sets (Table S2). A taxon coverage pattern, S, is decisive for a tree, T, if the 
induced subtrees define T. Sometimes S is decisive for all trees, but more commonly, it is 
only decisive for some or no trees. We report three aspects of fractional decisiveness. 
One is the fraction of all triples of taxa for which sequence data are present in a data set. 
A value of 100% is a necessary condition for decisiveness; it is also a sufficient condition 
when a reference taxon is present, as here (12). Another measure, ∠D, is the proportion of 
all binary trees on the label set X for which S is decisive (12). A coverage pattern with 
high ∠D is more likely to define some specified tree found in a search. This is estimated 
by sampling from a uniform distribution of binary trees on X and evaluating decisiveness. 
Finally, ∠d, is a measure of the average fraction of edges in trees on X that are 
distinguished by the taxon coverage pattern (12).  
 
Terraces. First we provide a proof of the basic observation about terraces made in the 
main text. 
 
Observation (definition of terrace): The set of all parent trees of T | Y1, ..., T | Yk has the 
same L-score as tree T, namely, l0 . This set is a terrace. 
 



2 
 

 

Proof:  From Eq. (1),   
 

    
  
L(D,T) = L(Di,(T |Yi))

i=1

k

∑ = l 0    (2) 

 
 
and if T '  is any other parent tree of  T | Y1,...,T | Yk  , then T ' | Yi = T | Yi   (since T is 
binary) and so 
 

   L(D,T ') = L(Di ,(T ' | Yi ))
i=1

k

∑ = L(Di ,(T | Yi ))
i=1

k

∑  

 
which, by Eq. (2), implies that  
 
     L(D,T ') = l 0 . 
 
 
Rooting and reference taxa. The basic observation and definition of terraces holds for 
rooted or unrooted trees. However, some algorithms used in the text assume rooted trees, 
including those used to enumerate all trees on a terrace (17) and to show that terraces are 
subsets of tree islands (16). To ensure rooted trees are available we make the sufficient 
(but not necessary) assumption that there exists in the data a reference taxon for which 
each locus has been sequenced. Such a reference taxon can serve as de facto root for 
algorithmic purposes whether it is the true phylogenetic root or not.  
 
Analysis of terraces in data sets. For each data set, we determined S, the pattern of taxon 
coverage, using the boundaries of each of the k loci and scoring a locus as present (+) for 
a taxon if it contained any sequence data other than gaps or question marks. For any 
given binary tree, T, obtained in an MP or ML search, we generated the k induced 
subtrees with a PERL script, displaysub.pl. From these another PERL script, 
maketriplets.pl, generated a set of rooted triplets that define each of these trees. 
Neither of these involve significant computational or algorithmic issues. Finally, we 
implemented the algorithm described in Constantinescu and Sankoff (17) in a PERL 
script, countParents.pl, which counts the number of binary parent trees compatible 
with these rooted triplets. If this program exceeds a user-supplied upper bound (1 billion 
trees in the present analysis), it terminates and reports the upper bound has been reached.  
 
Another script, build.pl, constructs the supertree displaying all the induced subtrees, 
using the BUILD algorithm (20; following 17). This tree is also known to be the Adams 
consensus tree of all the parent trees of the induced subtrees (Theorem 2.10 of 21). Thus, 
it as an extremely informative summary of the phylogenetic dimensions of a terrace, and 
it is obtained without the computationally infeasible step of enumerating and storing all 
parent trees. 
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A useful check on the calculation of terrace sizes and their consensus can be obtained for 
small to moderate input trees by exploiting another known result from the theory of 
supertrees. For a compatible set of input trees, as our induced subtrees are by definition, 
the set of all supertrees compatible with this set can be obtained by the MRP (matrix 
representation with parsimony) supertree method -- that is, by finding all the most 
parsimonious trees for the MRP matrix (27). The only problem in practice is that we must 
use an exact MP search algorithm, such as branch and bound, to guarantee finding all the 
optimal trees, which can be slow even though there is no conflict in this MRP matrix 
(because the inputs are compatible). Nonetheless, we found this to be a workable check 
for many of the trees examined in the colubrid data set, for which terrace sizes were often 
on the order of a few thousand trees. All checks indicated agreement between our direct 
implementations and this MRP workaround. 
 
To determine how many different terraces are reflected in a sample of trees, we need to 
be able to check if two binary trees are on the same terrace. For this we again construct 
the k induced subtrees for each of the two trees as described above, and check whether 
the ith induced subtree for each is the same, for all k loci. This requires an efficient way 
to compare two phylogenetic trees. We exploited the data structure invented by Day (19) 
to build strict consensus trees, which has a running time of O(n). Since there are at most k 
loci to check, the running time of this test for membership in the same terrace is O(kn). 
We wrote a PERL module, treesequal.pm, for the equality test, called from a master 
script, sameTerrace.pl. For a set of input binary trees, the master script assigns the 
first tree to a new terrace, then checks if the second tree is on the same terrace as the first 
tree. Each new tree only needs to be checked against the unique terraces already found 
(rather than against all trees in the input), and then it is added to the list of terraces if it is 
new.  
 
Visualization of a neighborhood in a large tree island. We examined the local 
neighborhood of the ML estimate for the grass data set (22; Fig. 2). Fifty replicate 
partitioned searches using the RAxML GTRCAT model were run, and the best tree under 
GTRGAMMA kept. PAUP* 4.0 was used to find the 590 nearest neighbor trees of this 
ML tree and their likelihoods were calculated using RAxML as described above. We 
noticed that one tree in this neighborhood had a slightly higher likelihood, and we 
therefore did another round of NNI exploration around that tree, using this final ML tree 
and its nearest neighbors.  
 
To circumscribe the part of a tree island close to the ML tree, we considered all nearest 
neighbor trees within 5.0 log likelihood units of the maximum likelihood tree found in 
that second round. The choice of 5.0 is somewhat arbitrary (6, 7, 28). Let L = L* - Δ be 
the minimum optimality score value required in the definition of a tree island, where L* 
is the optimal score for the best tree found on the island. Small values of Δ induce smaller 
islands, at the cost of obscuring connectedness between trees with similar scores. On the 
other hand, larger values of Δ lead to inclusion of very large numbers of trees and 
increase the probability of multiple local optima per island (28).  The number of 
neighbors connected to the optimal tree by NNI rearrangements grows exponentially with 
the NNI distance between the optimal tree and the included trees. Thus, Δ is a tuning 



4 
 

 

parameter providing different views on the landscape structure in tree space. However, 
numerical imprecision in likelihood calculations in large data sets also puts a lower limit 
on Δ (+1.0 log likelihood units is recommended in large data sets in the user manual of 
RAxML, 14). We selected Δ  = 5.0 log likelihood units for the grass data set, which was 
large enough to avoid numerical problems and include a large fraction of all the nearest 
neighbors of the optimal tree, but small enough that it discriminated against the even 
larger fraction of nearest neighbors, some with much lower likelihoods. Thus it provided 
a fine scale picture of the very close neighborhood of the peak and its terraces. 
 
There were 198 nearest neighbor trees within Δ  = 5.0 log likelihood units of the ML 
estimate, but there were only 168 distinct terraces, because some trees with adequate 
likelihood scores were found on the same terrace. The tree space around this ML estimate 
was visualized using the metaphor of agricultural terraces on a mountain side. Using the 
OpenGL graphics library we wrote software to draw horizontal partial ring shaped 
terraces, the area of which is proportional to the number of trees on a terrace, and the 
height of which is proportional to the likelihood score. The C program, tree_space, 
allows changes of viewpoint and zooming.  
 
Data combination via concatenation. Our Eq. (1) and observations based on it assume 
phylogenetic inference is based on a concatenated supermatrix alignment, a very widely 
used protocol for the analysis of large phylogenetic data sets. Concatenation is 
theoretically proper when used for collections of loci on nonrecombining organellar 
genomes, such as metazoan mitochondrial (~16 kb in size) and plant plastid data sets 
(typically ~160 kb). It should also be appropriate in nuclear genomic regions in which 
recombination is low, such as mammalian haplotype blocks (often 10-100 kb regions 
between recombination hotspots). Concatenation has also been very widely used for 
putatively unlinked single copy orthologous nuclear markers, such as those derived from 
EST libraries (e.g., the arthropod data set), but in this setting it is well known that 
incomplete lineage sorting can induce considerable gene tree discordance that is "real"--
that is the gene trees are correct for the genes even if incorrect for the species. However, 
discordance is expected to be low when the ratio of branch lengths to population size is 
large (29), as is often assumed to be the case in deep phylogenies, but phylogenomic 
evidence indicates it is high in recent radiations of closely related species. New methods 
of phylogenetic inference that capitalize on this discordance, by minimizing deep 
coalescence events or explicitly modeling the multilocus coalescent, appear to work best 
in the latter context but to be considerably less necessary in the former, where 
concatenation performs nearly as well (29). 
 
Maximum Defining Label Set (MDLS) problem.  For k = 2, the exact solution can be 
obtained in polynomial time by a straightforward application of Gordon's (30) strict 
consensus supertree method. If the strict consensus supertree from his algorithm is a 
binary tree, the input trees must define that tree. Assume the input trees are the induced 
subtrees from locus 1 and 2, T1 and T2, and the subtree on the overlapping taxa is t. For 
each edge, e, of t, there is a set R1 of taxa unique to T1 that attach to e, and R2 of taxa 
unique to T2 that attach to e. Let r1 = | R1 |  and r2 = | R2 |. In Gordon's algorithm, we do the 
following for each edge, e: 
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1. if r1 = r2 = 0, then we do nothing for edge e, 
2. if r1 > 0, and r2 = 0, then we add R1 to edge e with the same topology as is found 

on T1,  
3. if r1 = 0, and r2 > 0, then we add R2 to edge e with the same topology as is found 

on T2,  
4. if r1 > 0, and r2 > 0, then we insert a node, z, in e that has a degree greater than 3, 

collapsing all the relationships in both R1 and R2 into a polytomy at z--implying 
the final output tree will not be binary 

 
Figure S1A illustrates this. Case 4 is the only case that causes problems, and the obvious 
solution is to keep the larger set, R1 or R2, for edge e, and discard the other smaller set. 
With this in mind, our algorithm visits each edge of t and selects the set from T1 or T2 
with larger size (Fig. S1B). This must produce the largest label set possible, because it 
gives the largest set at each branch of t. This algorithm is implemented in a PERL script, 
mdls.pl.  
 
Properties of the MDLS solution. In our setting the subtrees forming the input of the 
MDLS problem are obtained by restricting some optimal tree obtained during tree search 
to the taxon coverage pattern for those loci. However, the choice of this tree does not 
matter: any tree on the same terrace leads to this solution: 
 Lemma: Suppose T1 , ..., Tk are compatible rooted binary trees with label sets      
Y1 ,..., Yk;   X α Y1 ∗ ... ∗ Yk. Suppose X* � X  is a set for which {T1 | X*,..., Tk | X*} 
defines a tree t*. Then for any tree T (binary or not) that displays {T1, ..., Tk} we must 
have T | X* = t*. In particular for any two trees T and T '  that display {T1, ..., Tk} we have 
T  | X*=T '  | X*. 
 Proof. T | X* displays T1 | X*,..., Tk | X*, since (T | X*) | Yi = (T | Yi)| X* = Ti | X*, 
and since t* is the only tree with label set X* that displays T1 | X*,..., Tk | X* we must have 
t*=T | X*. 
 
In addition, because the BUILD tree constructed from the induced subtrees, T | Y1,..., T | 
Yk (and used to summarize the terrace) displays this set of subtrees, the MDLS solution, t, 
is the same as the BUILD tree restricted to X*. Note, however, although the BUILD tree 
restricted to X*,  is binary, the BUILD tree itself may not be binary.  
 
Heuristic solution for k > 2. No exact polynomial time solution for the MDLS problem is 
apparent for k > 2, and indeed its complexity is an open question. We can construct 
relatively brute force but slow solutions, but for our purposes we settle for a naive greedy 
heuristic. For the grass data set, we solved the exact MDLS problem for each of the three 
pairs of loci, took the pair that retained the largest taxon set (loci 1-2, discarding only 3 
taxa), built its MDLS tree, and then used it with the subtree for locus 3 (discarding 9 
additional taxa). We checked the terrace size of this tree using both the direct 
computation and the MRP solution and indeed only one tree was found. However, as this 
is heuristic, another solution might exist which discards fewer than 12 taxa. 
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Optimal new sequencing.  The list of taxa discarded by the MDLS solution is an obvious 
candidate for additional sequencing. We address this here for k = 2 only. Visit each edge, 
e, of t, in which there are two sets of unique taxa attached, R1 and R2 (one set per locus) 
such that both r1 > 0 and r2 > 0, which is the only case in which taxa are discarded. 
Assume the discarded smaller set is R1 without loss of generality. We sequence R1 for 
locus 2 (Fig. S1C). Now we have a larger set of taxa, R2' ⊃ R2, in the induced subtree for 
locus 2. If the induced subtree for R2 is not changed by the new data (admittedly a strong 
assumption), that is if the induced subtree on R2  is a subtree of the induced subtree on R2', 
then the only difference will be that the overlap tree, t, has more nodes in it, and those 
nodes will be within the original edge e or possibly attached to new edges that are 
attached to nodes within e. The taxa in R1 will all be attached to new nodes of t, and 
hence will be removed from possible conflicts with taxa from R2. Some of the taxa in R2 
will possibly be distributed between these new nodes, but there will no longer be any 
unique taxa from locus 1 in this vicinity since all have been accounted for in t, so case 3 
above will apply. Since the MDLS problem discards the fewest unique taxa necessary to 
define a tree, restoring those taxa represents the optimal (fewest) number of taxa to 
sequence to define a tree.  
 
Modification of MDLS for targeted species lists. Users of phylogenetic trees often have a 
set of phenotypic or other data for a list of species that does not necessarily match exactly 
the taxa in a supermatrix. Solution to the following slight variant of the MDLS problem 
will return a label set that defines a tree and contains the maximum number of species 
from an input list. 
 
 
 Problem: Maximum defining targeted label set 
 
 Given: Compatible rooted binary input trees, T1 , ..., Tk with label sets Y1,..., Yk;    
X α Y1 ∗ ... ∗ Yk; a set of taxa Z � X, comprising a list of targeted taxa to retain in the final 
tree.  
 
 Find: The largest label set Z* � Z, such that T1 | Z* ,..., Tk  | Z* together define a 
parent tree T* on Z*.  
 
 This can be solved for k = 2 simply by modifying the algorithm described above 
to keep the contributions from whichever tree has the most targeted taxa rather than the 
most taxa overall. Another slight variant would maximize non-targeted taxa taxa once 
targeted taxa have been maximized to increase the overall size of the label set. This might 
be left to the discretion of the user to decide if non-target taxa add or detract from  
downstream comparative analyses. 
 
Relationship to SMAST problem. A related problem has been discussed in the literature 
(31), the Supertree Maximum Agreement Subtree problem. This problem is designed to 
build a reasonable supertree from input trees that may conflict with respect to 
relationships among their shared taxa. The output of this problem is any parent tree that 
displays the input trees on X*. It aims to eliminate the shared taxa that cause conflicts, not 
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the taxa unique to individual trees for which there is no "cross-talk" between input trees. 
Berry and Nicolas (31: sect. 3.2) show that any SMAST contains all the unique (their 
"specific") taxa. This follows because there is no information to contradict the specified 
relationships on the individual trees. In our case of compatible input trees induced by the 
taxon coverage pattern, SMAST would simply return any one tree on a terrace, complete 
with all its taxa. 
 
Software availability. All software described above is free and open source and 
available for download via SourceForge at http://sourceforge.net/projects/phyloterraces/. 
 
Supporting Text 
 
Incompletely partitioned models. The terraces defined are inherent in MP analysis, but in 
ML and Bayesian analysis they emerge in the context of completely partitioned models. 
Although completely partitioned models seem increasingly warranted in response to 
widespread heterotachy in real data, it may not be required by any given data set. If the 
models for different loci share parameters in common, then the likelihood contributions 
of each locus will interact among loci, and Eq. 1 does not hold (exactly). This is the case, 
for example, if two loci have separate substitution rate models including rate variation 
across site parameters, but share a common set of branch lengths, or a common set of 
lengths differing by no more than a single scaling parameter between loci. Consider the 
sum of estimated branch lengths between two taxa that are both sequenced in the 
supermatrix. Each locus may have data missing for critical taxa that bear on some of the 
internal branches along that path, but since there is a common set of parameters bearing 
on the summed path length (and its branches), the likelihoods of these parameters will not 
be simply decomposable into terms for each locus. 
 
We suspect that certain incompletely partitioned models will be associated with 
structures that are quite like terraces in the sense we have defined, but this requires 
further investigation. In the meantime, as users' preferences and the demands of data 
increasingly favor fully partitioned models, terraces are likely to be a fixture of tree 
space. 
 
Data sets with little phylogenetic signal at decisive loci. The requirements for the 
existence of terraces are sufficient but not necessary in real data sets, because other 
factors can induce flat regions in the likelihood surface. To take an extreme example, 
consider a data set of 10 loci in which the first locus is completely sampled, but the other 
nine all have partial taxon coverage. Because even a single completely sampled locus 
causes a data set to be decisive (12), there would be no terraces with multiple trees for 
any tree found in a search. However, suppose that the partial taxon coverage in the nine 
loci would induce large terraces if the first locus were absent. Further, suppose that the 
first locus has very little variation, so that it contributes likelihood scores that are all very 
similar for different reasonable candidate trees in the island containing the ML tree. In 
that case, tree space might well look much like it did for the nine loci alone, perhaps 
modulated to be slightly non-planar by the first locus.  
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Supporting Tables 
 
Table S1. GI numbers of GenBank accessions used in Fig. 1. 
 
Species name matK rbcL 
Cercis chinensis 183528996 148590346 
Lotus japonicus 13518417 13518420 
Amorpha apiculata 38373082 - 
Aeschynomene pfundii 6466270 - 
Erythrina speciosa - 18157275 
Lotononis acuticarpa - 182411699 
 
 
Table S2. Fractional decisiveness values. See SOM text for explanation. 
 
 Arthropods (11) Grasses (22) Colubrids (23) 
% triples 99.998 66.358 91.221 
∠D 1.00 0.00 0.00 
∠d 1.00 0.88 0.98 
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Supporting Figures 
 

Fig. S1. The MDLS and optimal new sequencing problems. Tree is the overlap tree, t, 
between two input trees representing the induced subtrees for two loci. Two nodes from t 
are shown as black filled circles. Taxa unique to tree 1 or 2 are labeled as "+-" or "-+" 
respectively to refer back to the taxon coverage pattern in the original supermatrix. In 
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other words, "+-", refers to a taxon sampled for locus 1 but not 2, and therefore present 
in induced subtree 1 but not subtree 2. Sets circled with dashed lines refer to the sets of 
unique taxa for each tree. A. The consequence of combining these two trees using 
Gordon's supertree algorithm is to induce a polytomy along the indicated edge, which 
implies that these two input trees do not define a tree. In the present context this means a 
terrace of size greater than 1 would be found. B. However, if the smaller set of taxa is 
simply deleted prior to combining the trees, the supertree is binary, defines a tree (and 
therefore would induce a terrace with only one tree), but is obviously missing r1 taxa. C. 
This set of taxa can be rescued by simply sequencing the second locus. With the caveat 
that addition of the sequence does not change the topology of the induced subtree (a 
significant assumption), this would produce several new nodes in the overlap tree, and for 
each new edge, the unique taxa from tree 2 could also be added, because now they are the 
only taxa added to those edges (no unique taxa from tree 1 are added, because they have 
been accounted for in the overlap tree's new edges). Since these newly sequenced taxa are 
from the smaller set of R1 or R2, this leads to an obvious algorithm for sequencing the 
fewest additional taxa. 
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