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1. Introduction

Minimum-length trees are widely used for estimating phylogenetic
relationships from aligned sequence data (Felsenstein 1988). These trees
have their endpoints labelled with the taxa under study. The minimum-length
method selects the tree(s) which require the fewest evolutionary events
(‘‘steps’’) on its edges, to account for the variation within the characters.
Until recently, little attention was given to the question of how much better
the optimal tree fits the data compared to other trees. If a large number of
trees have length similar to the minimum-length tree, T, one might be less
confident that T is the correct tree than if T is much shorter than all other
trees. Indeed in such a case it could be doubted that the data are derived from
an underlying tree-like process.

Related to this is the question of measuring how ‘‘tree-like’’ the data
themselves are — by which we mean how much hierarchical information is
implicit in the alignment of the characters. Some measures have been pro-
posed, such as the consistency index of Kluge and Farris (1969), which in the
case of two character states is equivalent to the reciprocal of the number of
‘‘steps’’ per character. However the significance of the values this measure
takes is not clear, and it does not lead to a realistic test of tree-likeness.
Further problems of the consistency index have been highlighted by Archie
(1989).

A more meaningful measure of tree-likeness takes as a criterion the
number of ‘‘steps’’ required to provide a tree-fit, and compares the original
data with the data sets obtained after the original character state assignments
have been randomly permuted within each character. This approach has
recently been advocated by Archie (1989) who applied simulation to test for
the presence of significant hierarchical information of 28 data sets. The pur-
pose of this paper is to develop and apply analytical techniques to this prob-
lem.

One further, but minor difference between Archie’s approach and ours
is in the type of measures used. Archie considers indices such as the propor-
tion, ©(M), of randomizations of the data M which give rise to minimum-
length trees that require no more steps than M does on its minimum-length
tree. For reasons of computational simplicity, we consider a related, but
strictly different index, which is an upper bound on T(M).

We define this index in Section 2, and develop the techniques required
to calculate the index in Sections 3 and 4. The calculations are made on the
partitions of the binary trees into their topological classes. A duality between
certain trees in each class and certain colorings of a given representative from
each class is exploited. The latter is easily enumerated by multiplying
together the appropriate generating functions.
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In Section 5 we apply these methods to sequence data on 10 taxa. Sec-
tion 6 extends the method to larger numbers of taxa by invoking an approxi-
mation based on a recent theorem which counts a class of bicolored trees,
leading to a further application in Section 7.

The results of this paper are complementary to those of Carter et al.
(1990), where formulae for the numbers of trees of different lengths on a sin-
gle column are derived. In Henderson, Hendy and Penny (1989) the results of
this paper are applied to studying evolutionary models of some influenza
viruses.

2. Definitions

For n 2 1, let B, denote the set of (unrooted) binary phylogenetic trees
having n terminal vertices (endpoints) indexed from the set {1,...,n} of
taxa, and having all other vertices unlabeled and of degree 3. We denote by
b(n) the number of such trees. It is well known (see for instance Harding
1971) that forn 23, b(n) = 2n-5)!' = (2n -5).2n -7)....3.1.

Let C = {A;,...,A,} be an alphabet of character states, which will be
referred to as colors. For r =4, C might correspond to the four nucleotide
bases, while for r = 2 the bases may be grouped into purine and pyrimidine
bases, or the colors may represent the presence and absence of some morpho-
logical characteristic. This latter case (r = 2) is the one we shall consider in
applications, as the computations are simpler. However there is no funda-
mental barrier to applying these methods when r > 2, and many of the central
results have been stated in the full generality of 7 colors.

Let M be an n X ¢ array of character states (M;;), M;; € C, representing
aligned sequences (for example DNA), and let M; be the j-th column of M, as
in Table 4. Thus M; is the character occuring at the j-th site in the aligned
sequences. For T e B, the weight of M; on T, denoted [(T)M;) is the
minimum number of edges of T which must be assigned differently colored
endpoints in order to extend the coloring of the endpoints of T described by
M; to all the vertices of T. Fitch’s algorithm (Fitch 1971) gives an efficient
method (O(n)) for calculating I(T;M;), and a minimal weight coloring of the
vertices of 7. The length of M on T, denoted I(T,M), is then defined as
Z1<jcc ITM;)).

The principle of parsimony (Fitch 1971) regards length as an inverse
measure of how well data fits a given tree, and thus selects the tree(s) T
minimizing [(T,M) to estimate the underlying evolutionary tree linking the
taxa under study. How well such a tree fits M compared to other trees
depends on the distribution of the values of /(T,M) over B,. Thus we define
the polynomial:
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FMx)=X,59 |{Te B,: (TM)=5}1x". ¢))

In particular we are interested in /(M) = min{l(T,M): T € B, }, which
by definition is the smallest exponent of x in F(M,x) with nonzero coefficient,
(i.e., the length of the minimum-length tree).

To measure the significance of the extent to which M gives rise to a
short minimum-length tree we need to measure how sensitive the lower tail of
F is to randomizations of the columns of M. Given an element ¢ of the per-
mutation group S, on n elements, let o(M;) be the character vector (M ;) ).
For 6 = (04, ...,0.) € S let 6(M) be the n X ¢ array whose j-th column is
0;(M;). Permuting all the columns separately and averaging over all possible
such ¢ destroys any hierarchical relationship between the columns, without
altering the relative frequencies with which the various colors occur in each
column. This gives us a second, finer distribution defined by the polynomial:

G(M.x) = Y, F(o(M).x). @

n)" oes:

Comparing the lower *‘tails’’ of F (representing the original data) and
G (representing randomized columns) gives a measure of how well the
columns are aligned to provide a low length fit to a common tree. For a poly-
nomial f(x) let <x'> f(x) denote the sum of the coefficients of x* in f(x) for
0<s <t We define the randomized parsimony distribution index of M,
denoted =(M), as

M) = <x'M>GM,x) . 3)

Thus (M) is the average (over the set of all randomizations, ¢, of M) of the
number of trees for which o(M) has length < [(M).

In particular, if T(M) denotes the proportion of randomizations, G, of M
for which I(c(M)) < (M), (the type of statistic considered by Archie, 1989)
we have:

M) < (M)

Thus if ® (M)< < 1, few of the possible randomizations of the columns pro-
duce data which fit a binary tree as well as M, implying a strong correlation
between the columns of M to produce a short tree. Conversely, if the
columns of M do not contain any hierarchical information, we would expect
7(M) to be approximated by the average value over all randomizations, ¢, of
n(c(M)). Now a simple, group-theoretic argument shows that for any M, the
average value over all randomizations, &, of T(6(M)) lies between 0.5 and 1.
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In view of the inequality nm(c(M)) = 1(c(M)), it follows that the average value
of 7{c(M)) will be at least 0.5. Thus we describe the condition ©(M) = 0.5 as
the big bang model (Henderson, Hendy, and Penny 1989) as it captures the
informal notion of there being no hierarchical relationship between the
columns of M. This notion can be regarded as a null hypothesis against
which to evaluate data M, as suggested in Thompson (1975).

Notice that it is not necessary to establish /(M) in order to reject the big
bang model, as a suitable upper bound provided by a heuristic algorithm may
suffice to show that ®(M) << 1. It is also worth noting that (M) is not a
measure of how likely it is that the shortest tree is the true evolutionary tree
linking the taxa. Instead it is a measure of how *‘tree-like’’ the data is, a con-
cept which has been used to test biological hypotheses, as in Henderson et al.
(1989).

3. Calculations (I)

We now show how to calculate mt(M).
First we list the elementary relationships between F and G. '

H FM;x)=GMjx)forj=1,...,c.

(i) Ifoe S5 G(oM)x)=GM,x).

(iii) Ifo®=(o,...,0),0¢€ S,, F(c’M).x) = F(M,x).

(iv) FMx)=x*FM’,x) and GM,x)=x*G(M",x), where M’ is
obtained from M by deleting the ‘‘singular’” columns (having at
most one color from C occurring more than once), k = Z<js. d (M s
and 0(M;) + 1 is the number of colors in M; if M; is singular,
d (M;) = 0 otherwise.

(v)  Let up(M) denote the mean value of /(T,M) averaged over B,,. That
is, WrM)=>bm)"! 9/9xl,.y FM,x). Let pg(M) denote the
corresponding mean for the distribution described by G. Then
He(M) = up(M) = Zigicc Up(M)).

By (iv), singular columns translate both the distributions F and G
equally, so it is convenient to delete these columns from data, as in the appli-
cation of our results below. Also, although the calculation of /(M) is an NP-
complete problem (Graham and Foulds 1982), ug(M) can be readily com-
puted from (v) by using Theorem 6.2 (below) to calculate pp(M;) for
Jj=1,...,c. Despite the equality ugs(M)=us(M) in (v), the variances
(M), 6% (M) of the distributions induced by F and G are not simply related,
even when r = 2. For if M* denotes k concatenations of M, then cZ(M*) =
k% 6#(M), while 6%(M*) can be shown to be approximately £ 6%(M). Thus
one can have 6% >> cé. Conversely, if M consists of one column for each
of the 2" bicolorings of {1, ... ,n} then F(M,x) = b(n)x”, where
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TABLE 1

The Number of Topological Classes of Binary Phylogenetic Trees for n<18.
(Hendy et al. (1984))

n <5 6 7 8 9 10 11 12 13 14 15 16 17 18
k) 1 2 2 4 6 11 18 37 66 135 265 552 1132 2410

w=2GBn=-22"1+(-1)/9 (Steel 1990), so oxM*)=0. But
& (M) #0, giving 65 (M*) — o0 as k — oo,

Computing G(M,x) directly by summing over all ¢ in S5 quickly
becomes prohibitive as the length of the sequences, ¢, or the number of taxa,
n, grows. We give a more convenient way to calculate G(M,x) for moderate
values of ¢ and n and thereby derive approximations when »n or c is large. We
begin with the following observation.

The symmetric group S, acts on B, with 6(T) being the tree obtained
from T with endpoint v; replaced by v, fori = 1,...,n. Each orbit in B,
will be called a topological class (of order n). The collection of all such
classes, T(n), grows exponentially in size, indeed |t(n)| is asymptotically
proportional to A”/n>?, where A =2.48325 (Otter 1948; Harding 1971).
However I1(n)! grows much more slowly than b(n); for example
T(10)| = 11, while b(10) =2,027,025. Values of |t(n)l, for n <18 are
given in Table 1.

For a topological class ¢ of order n, and T € ¢, we can calculate l¢] as:

[t =18,:SM)l =n!/18T) , (€))
where S(T) is the subgroup of S, which ﬁxes T (Fralelgh 1982, Theorem
16.3). For binary trees we have I1S(T)| = k) ks i , where k3(T),

(resp. ko(T)) is 1 precisely if T has a vertex (resp. .edge) whose deletion
breaks the tree into three (resp. two) topologically-equivalent rooted subtrees,
and is O otherwise; k(7)) is the number of vertices v of T for which exactly
two of the rooted subtrees obtained by deleting v are topologically-equivalent
(Hendy, Little, and Penny 1984).
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ForT e B,, let h,,(T,a;, . . . ,a,) denote the number of ways of coloring
the endpoints of T so that precisely a; endpoints are assigned color A; for
i=1,...,r, and so that the resulting coloring has weight m. Clearly the
quantity h,(T,ay, . .. ,a,) is the same for all trees in a fixed topological class,
though in general it varies across classes (however when r =2 some
topology-invariance results apply, described in Theorem 4.6, below). Let
HT,ay,....a) = X0 hm(Tay,...,a)x™, and let p(M;ay, ... .a,) denote
the number of columns of M for which the number of occurrences of the vari-
ous character states, arranged in nondecreasing frequency is ay, . . . ,4,.

Theorem 3.1.
GM,x) =% ¢ yn) 1HIG(M,x;1)
where
GM.x;t) = TH(n Y MM, ¢ <, 4 H(Tay, . ... ,a, Y% %) Teu,
and the outer product is over all r-tuples 1 <a; <+ --< a,.

Proof. By symmetry | {c e S5: I(T,6(M)) =s} | depends only on the topo-
logical class t of T. Thus, forany T € ¢,

Y HTet:lT,oM))=s}!=ltlxl{ce S5: I(To,oM)) =5} 1,
GeS;
since both expressions enumerate the set of pairs
{(TloM)):Te t,ce S, and (T,oM)) =5} .
Thus if we let G ™ (M, x;t) = Z,50 G,()x°, where
G)=(n!)* I {oe S;: (T,oM)) =5} Ix*
forany T € t, we have
GM,x) = Zjc o) 111 G M, x52) . )

Furthermore G (M,x;t) =Tli<je. G (M x;t), and G (Mj.x;t) =
(ny ' g\ H(T.a1(j), . . . .a,(j)) where T € t, and M; has a;(j) occurrences
of the color A; fori = 1,...,r. Thus G*(M,x;t) = G(M,x;t) and the theorem
follows from (5).

4. Calculations (I)

Theorem 3.1 reduces the calculation of m(M) to that of evaluating
ho(T.a,,....a) forany T € t. Let 0 = 0,01, ... ,0,, 1 <m<n (where
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o; € C) be a sequence of colors, and let T, refer to a partial coloring of T
with terminal vertex v; colored o, for j =m, ... ,n.

Define H(T y,a,, . . . ,a,) = Z;>p h;x', where h; is the number of ways of
assigning a; endpoints of T color A; given that vertex v; is colored c; for
J=m, ... ,n,and so that the resulting coloring has weight i on 7. Clearly if o
contains more than a; occurrences of A; for any i, then H(T y,a4,...,a,) = 0.

Also, assigning color A; to each nonterminal vertex of 7, for 1 <i<r,
gives

h;=0if i >n-max {a;,....a}. (6)

Regarding C as an ordered set, a permutation ¢ € S, permutes the ele-
ments of C, and so we can define o(a) = o(a,), . . . ,0(c,,). Then we have
the following result.

(Permutation) Lemma 4.1.

H(Ta,al, . ,a,) = H(T(,(a),ao(l), . ,ac(,)) , (7)
H(T,al, e ,a,) = H(T,ao(l), e ,ao(,)) . (8)

Considering all colors € C that can be given to v,,_; gives a second
elementary result.

(Extension) Lemma 4.2.
H(Tg.ay,...,8)=23c cHTyp,a1,...,4a,). ¢))

We say T can be reduced at endpoint v, if there is an edge e of T whose
deletion partitions the endpoints into two subsets {vi,...,v,,.;} and
{Vm, . . . v} with v,, adjacent to an endpoint of e. The subtree containing
Vi,...,Vj,jSm—1,is denoted /T.

We now present two recursions resulting from this decomposition
which follow from a property of Fitch’s algorithm (Fitch 1971). We first
describe part of this algorithm. Given a coloring of the endpoints of a binary
tree T, place a root vertex v on the midpoint of any edge of T to give a rooted
tree T", and direct all edges away from v,. Assign to each internal vertex a
nonempty set Sc {A;,...,A,} recursively as follows: endpoints are
assigned the set containing just their color, and for each vertex v incident
with edges directed towards two vertices whose sets S, S, have already been
chosen assign v the set S(v), where
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S(p) = S1 NS, if this set is nonempty,
M= 15,0US, if S;NS2=0 .

The following result is proved by Hartigan (1973).

(Fitch’s) Lemma 4.3. The weight of the coloring is the number of vertices of
T" (including v) for which S(v) is defined by the second option in the above
process.

If T can be reduced at v,, then rooting T on an edge in m-1T and apply-
ing Fitch’s lemma gives the following recursions.

(Reduction) Theorem 4.4. Suppose T can be reduced at v,, and
Oyyyils - - - 5Oy are all distinct.

(i) ifo,,€ {Ope1s...,00) then
H(Tg.ay,....a,)=x""1H(™T, ,by,....b,)
where b, = a; — 1 ifA; € {Opy1,...,0,}, while b; = a; otherwise.
(ii) i 0y Opyts - - - Oy are all distinct, and include all colors in C, then
H(Tg.ayq,...,a)=x""H™T,b,,....b) whereb; =a;— 1.
Because of (8) we need only calculate H(T,ay,....,a,) for

ay <aj <---<a,,the others being obtained by permutation.
We now specialize to the case r = 2, setting a = a1, b = a,, and refer-
ring to the two colors as A,B. By the Extension Lemma, (4.2),

H(T,a,b) = H(T4,a,b) + H(Tp,a,b), (10)
H(T4,a,b) = H(Tpy,a,b) + H{T gp,a,b) . 11

By the Permutation Lemma (4.1),
H(Tg,a,b) = H(T4,b,a) (12)

Now if T can be reduced at v,_; (that is, if v, and v,_; are incident with
adjacent edges), the Reduction Theorem gives:

H(Tya,a,b) = H(* ' T,,a - 1,b), 13)
H(Typ,a,b) = xH(*?T,a-1,b-1). (14)

These results allow a recursive method to calculate H(T,a,b), and we
now give two general applications.

First consider the class "Z (where n = 1) of linear (‘‘caterpillar’’) trees,
illustrated at the top of Table 2.
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TABLE 2

Topolagical Classes of Trees

n1 ! N

n26
Syaandziv-tz

Va2

6,
X = (46) Z.,X-SZ

. 7 1,6
n W=GNY, ws Y
w

n-1

7, 7
Vv ew1s)'z, by 55,

n-1 Sy a3z

13 LI A
U=(68) Y, U= Y
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TABLE 2 (Continued)

nzi0

766
Teesnz, T2

v
nel

9 8 [
%5 =Y. sty

v
11

o 9 8 B
l’r’ = lSBé)aY 7[':7\(‘ Q=W Q= W

Sp . by 2 3

Let Z(u,v,x) = 24 420, a4521 HCPZ, a,b)u’ v® (15)

Theorem 4.5.
Z(u,v,x) = i%l -1,

where P = (1-u)(1—v)—uvx(2—u—v).

Proof. For X = A, B, AB, let Zy = Zy(u,v,x) be defined as for Z = Z(u,v,x) in
(15) with **Z replaced by ®**Zy. Then for n > 3, "Z can be reduced at v,
and /("Z) =’Z, so that by the recursions (10) to (14) we have:

Z=ZA+ZB;
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Zy=uUZy + uvxZ + u + uvx ;
Zp =vVZp + uvxZ + v + uvx .

Solving this system of linear equations gives Z = Z(u,v,x), as required.

Generally, h,,(T,a,b) depends on the topology of T. For example,
h(T,a,b) is the number of edges of T partitioning the labels of the endpoints
of T into two sets of size a,b, and this can be zero on some trees and nonzero
on others. We now present three results which are invariant to the topology
of T.

Theorem 4.6. For a tree T in any topological class of order n,

(a) ha(T,m,m)=2"forn =2m.

(b)  hu(Tmm +1)=(m+2)2" " forn=2m + 1.

(c) Za'bhm(T,a,b) = ((n—m)Cm + (,,_m_l)C,,,)Z”' where ,C, denotes the
binomial coefficient r! ] k\(r — k)!.

Proof. (a). For any T € B, let P(T) denote the collection of all the sets
(including @) of edges of T which comprise disjoint paths joining endpoints
of T. Then P(T) forms a group under symmetric difference V.

Suppose n =2m. Letting n(1,i) denote the path joining endpoint v,
and endpoint v;, and I1=V ¢, n(1,i), we have I1 e P(T) and IT has edges
incident with every endpoint of T, so that IT has exactly m components. For
any other set I1” of m disjoint paths, II V IT1" has no edge incident with any
endpoint of T, thus since IIVII“e P(T), we have TIVII"'= O, and so
IT" =I1. Thus T has a unique set of m disjoint paths joining its endpoints. By
Menger’s theorem (Harary 1969, p. 50-51), the weight of a coloring of T is the
maximal number of disjoint paths joining differently-colored endpoints of 7.
As there are 2 ways to color the endpoints of each path in IT in this way,
h(T,m,m) = 2™, which establishes (a).

For (b), relabel T € By, so that T can be reduced at v,_;. Applying
(8), 2h,(T,m,m + 1) = h(T,m,m + 1) + h,,(T,m + 1,m), which by (10) - (14)
equals

B T4, m,m) + hp(" Tg,m,m) @)
+hy (" Tym—1m+ 1) + h,(* ' Tg.m+1m-1) (ii)
+ 20k, ("2 Tim = 1,m) + by ("2 Timm —1)) . (i)

Now by (10), (i) is h,,(T,m,m), while (6) shows that (ii) is zero. By (8), (iii) is
4hyp 1 (*"2T,m — 1,m). Thus from part (a) we have

hp(Tomm + 1) =21 428, (" 2T,m — 1,m),

giving the inductive step for (b). Part (c) is proved by Steel (1990).
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For n < 6 all the trees in B, are in the topological class represented by
"Z. However for n 2 6 other classes arise. We select representatives for these
classes so that a recursion based on the Reduction Theorem connects
representatives from each order. We can identify these families as trees
growing along a single linear subtree, so that each successive tree J can be
considered as an ”Z branch attached to a ‘‘core’’ subtree "~"J which belongs
to an earlier class.

Table 2 shows the 11 families of such trees, "Z, . .. ,"P, necessary to
cover all topologies arising on up to 10 taxa. The core subtree "~"J has been
written 6™/, where ¢ is a permutation of a subset of {1, .. .,n}, so that the

labelings of the core subtrees are consistent with earlier trees in the hierarchy.
For each tree other than "Z (dealt with already), "V and "P, the tree J is
formed by attaching a linear tree to the edge incident with v, in (r —2,r) "J.
The trees "V and "P are formed by attaching a linear tree to the edge incident
with v, in (r — 3,7,y —2) "J. When n = 10, if the trees are ordered 1°Z,....,1°P,
the size of the corresponding topological classes, ¢, calculated from (4), are
given by log, (10! / 1¢1) = 3,4,3,54,54,7,5,8,6.

Applying the Extension and Permutation Lemmas, and the Reduction
Theorem permits a recursive description of the polynomials H(/J,a,b), for the
classes of trees J in Table 2. For n < 10, Table 3 lists the coefficients of these
polynomials.

S. Application (I)

Table 4 lists sequence data M of length 56 for ten taxa. This data is a
variation on that of Penny and Hendy (1986), converted to purine and pyrimi-
dines, and with singular and constant columns deleted. A cat sequence has
been added. The ape and sheep sequences from the original taxa set have
been deleted so that there were no pairs of closely-related taxa. The nucleo-
tides have been paired into purines and pyrimidines. A complete search over
all trees on ten taxa shows that /(M,T) ranges between 121 and 170, so that
I(M) = 121. For this data we have the bicoloring frequencies:

pM;a,10—-a)=17,19,17,3,fora=2,...,5.

Using Theorem 3.1 to calculate G(M,x), Table 5 compares the cumulative
coefficients of F(M,x) and G(M,x) in two ranges of interest along their lower
tails. From the table we see m(M)=5.63x107, suggesting the sequence
data is highly tree-like. For these data, the minimal length tree has 121
changes in contrast to the 132 which would be expected for random data with
the same bicolor column frequencies.
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TABLE 3

Coefficients of H(T,a,b) for Topological Classes of Order 4-10.

Coefficient of: x
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TABLE 3 (Continued)

Class a b Coefficient of: x x2 x3 x4 x2
w 2 6 4 24

3 5 0 24 32

4 4 2 4 48 16

2 7 4 32

3 6 1 27 56

4 5 1 13 64 48

2 8 4 41

3 7 1 33 886

4 6 2 12 104 92

5 5 0 24 60 136 32
vV 2 7 3 33

3 6 3 18 63

4 5 0 21 57 48

2 8 3 42

3 7 3 23 94

4 B 1 23 82 104

5 5 0 20 88 112 32
U 2 7 4 32

3 6 0 28 56

4 5 2 12 64 48

2 8 4 41

3 7 1 31 88

4 6 1 19 90 100

5 5 2 14 84 120 32
T 2 8 3 42

3 7 2 26 92

4 6 2 18 90 100

5 5 0 24 76 120 32
S 2 8 4 41

3 7 0 32 88

4 B 2 16 96 96

5 5 2 18 72 128 32
R 2 8 4 41

3 7 2 30 88

4 6 0 24 82 104

5 5 2 6 100 112 32
Q 2 8 5 40

3 7 0 40 80

4 6 2 8 120 80

5 5 0 20 40 160 32
P 2 8 4 41

3 7 2 30 88

4 6 1 19 90 100

5 5 0 16 84 120 32
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Table 4. Ten mammalian sequences converted to 2-state characters.

The sequences are basically those from Penny and Hendy (1986) converted

to purines (R) or pyrimidines (Y) and then invariant columns and singletons

eliminated. The first row contains the consensus sequence, only the

differences from the consensus are shown in each column.

—

DOOIDOUED WN -

1 2 3 4 5
123456789012345678901234567890 12345678901234567890123456
RRYRYYYRRRRYYYRYYYRRRYRRRYRRYYRYRYRYYRRRRRRYRYRYRRRYRRYY

Monkey VY L RYYLLRRL LW YRV LY LYY Y..V.RYYR.
Horse e . seeaRa L RYLYRYLLLYYLRYLLRY, LYYY LYY L e Y....R
Kangaroo ReciR.Y.eo ROLRRYR.LLLLYYYL L LLYRLLYY L L L R
Rodent Wanae Y.R.Y..RY...YV..ue YeorRovvaouassne YeuorlVeuo
Rabbit P . P [ P R..¥..Y.R..¥V..iovnnn LA TR YVeoo
Dog Ra. YRR..VY Y.¥Y...Y..R.RR.VY, YR..Y.¥V.....
Pig ce Y Rias W RUYLRYL LY Y e Yeersanonnes Veeoun
Cat Y. R.YLLYR,LYRR, LYY L. Ry Y..RR.Y..YYRYR.RY.V.....
Human Y..Y..R..YYRR..civunee s 4 2 YeVeurann Y..Y.RYYRR
Cow Y S P - P RY..RY.ieneenns R..R.RY....Y.YYR...R..V.....
TABLE 5

Comparison of the Lower Tail Portion of F and G for the data of Table 4.

s <S>FM,x) <xS>GMx)
118 0 4.90x107®
119 0 2.47x108
120 0 1.20x 1077
121 1 5.63x 1077 = n(M)
122 5 254% 108
123 17 111x10°3
124 50 464x10
131 3656 0.36
132 5559 1.10

* Number of trees of length < s.

** Expected number of trees of length < s under the "big bang” model.

*** For random data, the expected length of the minimal tree is about 132,

in contrast to the actual length of 121.
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6. Approximation for n Large

As the number of taxa, 7, increases beyond 10 it becomes increasingly
difficult to apply Theorem 3.1 because of the number of topologies over
which summation is required. However, in the case of two character states, a
convenient approximation can be made. We begin with the following
definitions.

For a topological class ¢ of order n, let f,,(a,b; t) (resp. f.(a,b)) denote
the number of trees in ¢ (resp. in b(n)) which have weight m for the coloring
of {1,...,n}, in which {1,....,a}) and {a+1,...,a + b} arec assigned
colors A and B respectively. The relationship between f,(a,b;t) and
h,(T,a,b) for T € t, is given by the following result.

Lemma 6.1. ForT € ¢,
fm@b;t)  hyp(T,ab)alb!
itl (a+b)

Proof. Consider the collection of pairs (7,%) where T € ¢ and Y is a bicoloring
of {1,...,n} in which a (resp. b) labels are assigned character state A (resp.
B), and so that the resulting bicoloring of T has weight m. This set can be
enumerated in two ways: by counting the y’s for each T then summing over
all trees in ¢ to give ¢! h,,(T,a,b), or by counting the trees for each  and then
summing over all a/b bicolorings to give , 4 p)Cofm(a.b;t).

We now describe an exact expression for f,,(a,b). Let N(k,m) denote
the number of forests consisting of exactly m rooted binary trees (including
the degenerate case of the root attached by an edge to a single vertex) on a
total of exactly & labeled endpoints. Then from Carter et al. (1989),

(2k_.m_1)C(m_1) Xbtk—m+2),ifk>m,

Ntkom)={1ifk=m
0, otherwise.

With this definition we have the following result (proofs appear in Carter et
al. (1990) and Steel (1990)).

(Bichromatic Binary Tree) Theorem 6.2

m-D'2n-3m)N(a,m)N(b,m) ! b(n-m+2),ifa,b=2m

fm(@b)1b(m) = 1 6 otherwise,

wheren =a + b.
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We now apply Lemma 6.1 and Theorem 6.2 to approximate n(M). The
variation of k,,(T,a,b) across different topology classes for T shows relatively
little variation for most values of a,b,m, when n =a + b is large. Indeed
when a=m and b=m or m + 1 we have an equality across topologies
(Theorem 4.2). We therefore introduce an approximation by replacing
hn(T,a,b) with its average value as T varies across b(n). Thus let

hm(a,b) = b(n) ' Z1e pn) hm(Ta,b) .

Replacing h,,(T,a,b) by h,(a,b), Lemma 6.1 shows that H(T,a,b) becomes
@+6)CaF(a,b) where F(a,b) = b(n) 'Z,5/m@? x™ Thus from Theorem
3.1,

M) = b(n) <x'®>T g0, F (a,by ™2
7. Application (IT)

Applying the approximation to the data from Table 4, gives
(M) =5.40x10"7, which agrees well with the exact value
n(M) = 5.63x 107" from Theorem 3.1.

For the sequence data of length ¢ = 33 on n = 15 genera of Berberida-
ceae in Penny and Hendy (1987) we have /(M) = 56, and bicoloring frequen-
ciespM;a,15-a)=17,11,5,5,3,2,fora=2,...,7.

Applying the above approximation we find m(M) = 4 x 1073!, which
again is highly significant.

8. Approximation for c Large

If ¢ >>b(n) we can approximate n(M) by areas under normal-
distribution curves.
ForO0<a; <n,let

wai,...,a:;t)=1ILa! X, omh,,(T,a,,...,a,)/ n!
and
o’@y,....a:t) = ILa;! Tpuom®hp(Tan,..a,) | 0t — W@y, .a:t)
foranyT e t. Let
WM.1) = Zp@y,..a30)p (M: ay, .. ..4),
GZ(M,t) = Ecz(al,..,a,;t)p WM;a,,...,a)
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where the summations are over all r-tuples 1 <a; <aj; <---<aq,. Finally let
¢(x) denote the area under the standard normal density curve to the left of x.

Theorem 8.1. As ¢ — oo,
M) = Xy n(ny [21OAM, 1))

where MM, t) = (I(M) — WM, 1)) / 6(M,t).

Proof. Let Z{(t),...,Z.(t) be mdependent random variables with Z;(z)
assigned probablhty generatlng function G~ (M ;»X;t) (defined in the proof of
Theorem 3.1) and let Z(M,z) = ZZ(t) By definition, Z;(r) has mean
wai (), . . ..a,(j);t) and variance o (al(l) .2a,(j)st). As the Zj(t)’s are
independent and uniformly bounded, (though not identitically distributed), a
suitable version of the central limit theorem (Bauer 1972, p.279, Example 3)
shows that asymptotically (Z(M,t) — w(M,t)) / o(M,t) is normally distributed
with mean O and variance 1. By the independence of {Z;(z),....,Z.(¢)},
Z(M,t) has probability generating function G*M,x;t). Thus, letting P[ ]
denote the probability operator,

<M G*M,x;t) = P[ZM,1) S IM)] =
P[EMO=pMO) g 1y SMM,E) ~ 0UM, 1)),

which together with (5) gives the theorem.

It is worth pointing out that although G is approximated well near its
mean by a weighted sum of normal densities when ¢ 2 30, the tail of G is gen-
erally not well approximated, unless ¢ > > b(n) because of the rate at which
the normal density function decays. This becomes increasingly important as
n grows. For example, applying the approximation with ¢ =56 and n = 10
for the data in Table 4 gives an estimate for (M) many orders of magnitude
too small. Using Theorem 8.1 to calculate w(M) accurately will, for most
practical purposes, limit n to being < 6.

9. Summary

Comparing the tail of the distribution of trees according to their length
on sequence data with the ‘‘randomized’’ distribution leads to a natural meas-
ure (n(M)) of tree-likeness. The purpose of this paper has been to develop the
techniques required to calculate this measure, at least for the case of two
character states. For the sequences considered, the very small value of (M)
suggests that in both cases the minimal tree is considerably shorter than that
expected from the ‘‘big bang’’ model, so that the data can be regarded as
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strongly tree-like. It would be useful to extend Theorem 6.2 to deal with the
case r > 2, at least to r =4. Although the methods above can be used for
this, the computations become extremely complex. One result in this direc-
tion appears in Carter et al. (1990). To extend the exact computations of this
paper to larger values of n will also be difficult, because of the exponential
growth of the number of topological classes of trees.
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