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Summary. The last three decades have seen considerable debate concerning the relative merits and
problems associated with two competing approaches to phylogeny —approaches based on the parsi-
mony principle versus maximum likelihood methodology. Although the two approaches may seem
quite opposed, there are in fact some close relationships between them. For example, we describe a
recent result that shows how maximum parsimony can be regarded as a type of maximum likelihood
estimator when there is no common mechanism between sites (such as might occur with morpholog-
ical data and certain forms of molecular data). Distinguishing between this and other implementations
of maximum likelihood helps clarify some of the dispute that has surrounded the two methodologies.
We also provide a brief overview of some mathematical and statistical properties of the maximum par-
simony criterion.

Introduction

Many techniques now exist for reconstructing phylogenetic trees from genetic
sequence data. Two of the most popular approaches are usually referred to as
‘maximum parsimony and ‘maximum likelihood’. We will abbreviate these
approaches here as MP and ML respectively. Although MP continues to be
widely used, it is often criticised as being statistically unsound and as failing
to make explicit an underlying ‘model’ of evolution. Indeed there is little
agreement on how, or even whether, MP should be justified. According to
Edwards (1996), who prefers to call MP the ‘method of minimum evolution’,
the method was introduced in his joint 1963 paper with Cavalli-Sforza (in the
context of continuous characters) merely as a computational approximation for
ML, and by not as a method of choice in its own right. The discussion is fur-
ther complicated by claims that MP variously is, or is not, a form of ML, and
by the discussion of ‘zones’ within which either method performs worse than
the other in recovering the true tree.

Several authors (for example, Farris, Kluge and Eckardt, 1970; Sober, 1988)
claim MP is the preferred method of tree reconstruction, citing Willi Hennig’s
writings on phylogenetic inference, or alternatively the Principle of
Parsimony. The latter is a minimalist principle, also referred to as *Ockham’s
razor’. It states that one should prefer simpler explanations, requiring fewer
accnmntions. over more complex. ad hoc ones. In phylogeny reconstruction,
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about any underlying model or mechanism for evolution (however, this can
also be used as an argument in favour of the more usual forms of ML), or (ii)
to emphasise the feature that MP favours the tree requiring the fewest evolu-
tionary events (such as mutations) to explain the observed data, and so is, in
some sense, the ‘simplest’ or an ‘optimal’ description of the data.

Several authors (e.g., Farris, 1973; Sober, 1985, 1988) have also presented
explicit statistical arguments in favour of MP, based on underlying evolution-
ary models. Still others have undertaken the more modest task of providing a
statistical framework for using MP (Cavender, 1978; Kishino and Hasegawa,
1989; Maddison and Slatkin, 1991; Archie and Felsenstein, 1993; Steel,
Hendy and Penny, 1992; Steel, Lockhart and Penny, 1993b, 1995).

The simplicity of a method like MP and variations that allow weightings on
characters and transition types, together with its apparent lack of assumption
involving underlying models, has made it popular in phylogeny, particularly in
the 1970s and 80 s. However, model-based approaches have come to rival, and
even dominate, phylogenetic methodology, particularly over the last decade.
While ML is the leading alternative, other approaches include distance-based
methods that use transformed or inferred distances, for example logdet/para-
linear distances (see Swofford et al., 1996 for a review of distance methods
which are outside the scope of this overview of parsimony and likelihood).
One justification for model-based approaches was the classic and much-cited
statistical inconsistency of MP due to Felsenstein (1978). This paper demon-
strated that if sequence sites evolved under certain models and combinations ’
of rates, then MP would favour an incorrect tree. Furthermore, the probability
of selecting an incorrect tree would tend to 1 as the sequence length grew (this
phenomenon of statistical inconsistency will be discussed further in Section 4).
The particular combination of short and long branches that Felsenstein used
has become known as the ‘Felsenstein Zone’.

Both Felsenstein (1973) and Yang (1994) informally claimed the nonexis-
tence of any such zone within which ML would be statistically inconsistent
(though this was questioned by Sober (1988, Ch. 5)). Indeed, the statistical con-
sistency for ML (when the underlying model had no rate distribution across
sites, and this same model was then also used in the ML method to reconstruct
the tree) was rigorously established recently by Chang (1996b). Note that the
use of the ‘correct’ model (the same as the model used to generate the data) is
essential to the proof that maximum likelihood is consistent, and ML can be
inconsistent if the model used to analyse the data differs from that which gen-
erated it (see Chang, 1996a). Although one may seldom know the correct model
of evolution, the more one knows about the evolutionary process, the more like-
ly one is to avoid a zone of inconsistency by analysing the data correctly.

Nevertheless, objections to ML have arisen on a number of fronts, which we
now describe. First, there is concern about the validity and exact form of any
underlying stochastic model (for example, there is concern as to the choice of
underlying parameters/distributions), and that by selecting the appropriate
model one could perhaps reconstruct any favoured tree. There is also concern
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that ML estimation of a tree (and statistical tests between different trees) that
involves optimizing ‘nuisance (supplementary) parameters’ is statistically
problematic. There are also suggestions that the Felsenstein zone rarely if ever
arises for real data and claims for the existence of a ‘Farris zone’ where MP
outperforms ML. Another factor is the increasing analysis of aspects of
genome data that extend beyond site substitution—for example, gene order,
SINEs (short interspersed nuclear elements) for which MP may be more
appropriate. Finally there is some concern about the computational complexi-
ty of ML. Even on a given tree, optimising the likelihood can be problematic
(unlike MP, where Fitch’s algorithm (Fitch, 1971a) provides a linear time algo-
rithm for computing the parsimony score).

In this chapter we will explore some of these objections and survey some
recent theoretical results that shed light on the interplay between the two
methodologies and on the limits of what one can hope to achieve in phyloge-
ny reconstruction. We also describe some statistical properties of the parsimo-
ny score function.

It is useful to make a three-way division of the model of evolution. This
consists of a tree 7 (or more generally a graph when median networks or splits
graphs are considered), a stochastic mechanism of evolution (such as whether
or not it is neutral, Kimura 3ST, exhibits rate heterogeneity, etc.) and the ini-
tial conditions (for example, inter-speciation times or rates on each edge
(branch) of the tree).

Often researchers will seek to recover different aspects of the model. Most
frequently perhaps it is just the unweighted tree, regardless of the amount of
mutation on each edge of the tree. In addition, the tree will usually be unroot-
ed unless an outgroup or an assumption about a molecular clock is used.
Frequently, however, the rates of mutation will be required in order to estimate
times of divergence. Others will also wish to estimate the character states at
the internal nodes. It is thus too simple just to compare ‘parsimony’ and ‘like-
lihood’. Indeed likelihood itself comes in many flavors and these will be dis-
cussed next. The usual form of ML is ‘maximum average likelihood’, an
example of ‘maximum relative likelihood’.

Varieties of forms of ML in phylogenetics

According to Edwards (1972), the likelihood of the hypothesis H, given data
D and a specific model, is proportional to P(DIH), the conditional probability
of observing D given that H is correct. A ML method of inference selects the
hypothesis H that maximises the likelihood function for the data D (given the
specified mechanism). In the context of phylogeny reconstruction from
sequences, the data D typically counts the number of ‘site patterns’ that occur
in a collection of aligned sequences. The order in which these patterns occur
and the phylogenetic information that this might convey is usually discarded;
however, some authors have recently incorporated this also (for example,
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Thorne, Goldman and Jones, 1996; Giribet and Wheeler, 1999b). The hypoth-
esis H is usually the discrete phylogeny (unweighted tree) 7, and the model is
some stochastic process for site substitution (or, more generally, genome trans-
formation if insertions and deletions are allowed).

What complicates matters is that P(DIT), and hence the likelihood of T,
requires more information to specify it than just the data D and the parameter
T. More precisely, the probability of evolving D depends on further parame-
ters, sometimes referred to as ‘nuisance parameters’. In order to talk about
P(DIT) we either need to specify these parameters, or place some prior distri-
bution on them. The word ‘nuisance’ is a little misleading. It does not imply
that these parameters are of no interest, but rather that they need to be consid-
ered even if all one wants to know about is the tree 7. Examples of such param-
eters in molecular phylogenetics are the edge lengths (inter-speciation times
and rates of mutation on the edges), parameters associated with the substitu-
tion matrix (for example, transition/transversion bias) and parameters that
describe how rates vary across sites.

Nuisance parameters arise widely in many statistical settings and have been
discussed in the phylogeny setting by several authors, for example Goldman
(1990). Nuisance parameters may further be classified into ‘structural’ and
‘incidental’ parameters. The former are parameters that influence all (or near-
ly all) of the sites; incidental parameters influence only one or a few. Structural
parameters typically correspond to the edge (branch) lengths and parameters
that constrain the substitution process (for example, the transition/transversion
bias). Typically, such parameters are either selected to maximize the likelihood
or estimated directly from the data. Incidental nuisance parameters arise either
if (i) we wish to hypothesise a particular choice of sequences to appear at inter-
nal vertices of the tree, in which case we need to specify states for each site,
or if (ii) the process varies from site to site. We will discuss both these situa-
tions below. In any case, for a model of sequence evolution we will represent
nuisance parameters collectively by the Greek letter 6.

Two frequent assumptions concerning substitution models are that aligned
sites evolve independently and according to an identical process—the so-
called ‘i.i.d.’ assumption. Note that the i.i.d. assumption still allows sites to
evolve at different rates by regarding the rate of a site as being randomly and
independently selected from an appropriate distribution (such as a gamma dis-
tribution). Of course in real sequences one has clustering of ‘conserved’ and
‘hypervariable’ sites (so the real process is definitely not i.i.d. across sites) but
when one passes to the frequencies of site patterns (i.e. the data D) the process
can be modelled by an i.i.d. process. Similarly, certain covarion-style mecha-
nisms (where sites can alternate between invariable and variable during evolu-
tion) can be modeled using an i.id. process (Tuffley and Steel, 1997a), even
though the original covarion model (e.g., Fitch, 1971b) implied explicit
dependency between sites.

The i.i.d. assumption allows one to readily compute P(DIT, 8) by identify-
ing this with the product of the probabilities of evolving each particular site.
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Occasionally, more intricate models have been proposed and analysed. These
include models that allow a limited degree of non-independence between sites
(for example pairwise interactions in stem regions, Schoniger and von
Haeseler, 1994), and models that work with non-aligned sequences and explic-
itly model the insertion-deletion process as well as the site-substitution process
(Thorne, Kishino and Felsenstein, 1992).

Maximum integrated likelihood versus maximum relative likelihood (MIL
versus MRL)

If the nuisance parameters © and the phylogeny T are generated according to
some known prior distribution (for example, a Yule pure-birth process) one can
formally integrate out these nuisance parameters, and thereby take P(DIT) to
be this average value. That is, if ®(617) denotes the distribution function of the
nuisance parameters, conditional on the underlying tree 7, then

P(DIT)= [ P(DIT,0)d®(8IT).

This approach is sometimes referred to as ‘integrated likelihood’, and a tree T
that maximizes P(DIT) we will refer to as a maximum (integrated) likelihood
tree. Maximum integrated likelihood (MIL), and, more generally, the assign-
ment of posterior probabilities to trees based on sequence data (using Markov
chain Monte Carlo technique to approximate the integral in the above equa-
tion) has been independently developed by several authors recently, in partic-
ular Yang and Rannala (1997) and Mau, Newton and Larget (1999).

Assume for the moment that one possesses such a prior distribution. A nat-
ural question arises, namely, in what sense is MIL an optimal method for
selecting a tree? In particular, is it the method that is most likely (on average)
to return us the true tree? In order to formalize this question, suppose we have
a tree reconstruction method, and we apply it to sequences that have been gen-
erated by a model with underlying parameters T and 0. The reconstruction
probability denoted p(M,T,0) is the probability that the sequences so generat-
ed return the correct tree 7 when method M is applied. Since we have a distri-
bution on trees and the nuisance parameters, let p(M) denote the expected
reconstruction probability of the method M, obtained by integrating p(M,T.8)
over the joint parameter space. That is,

p(M) = E[p(M,T,0)1= 3, p(T)[ p(M,T,8)d®(8IT)
T

where p(T) is the probability of the tree T under the prior distribution (we will
assume that only binary trees have positive probability). The following propo-
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sition describes precisely the method that maximizes the expected reconstruc-
tion probability:

Under the conditions described, the method M that maximizes the expect-
ed reconstruction probability p(M) is precisely that method that selects,
for any data D, the tree(s) T that maximizes p(T)P(DIT).

For a proof of this last assertion, see Székely and Steel (1999). The tree(s) that
maximizes p(T)P(DIT) is sometimes referred to as the maximum a posteriori
(MAP) estimate. This is precisely the maximum (integrated) likelihood tree(s)
whenever the prior distribution on binary trees is uniform (i.e., when all bina-
ry trees are equally likely). Consequently, assuming that the prior distribution
assigns equal probability to all binary trees, MIL maximises one’s average
chance of recovering the correct tree. However, if the distribution on binary
trees is not uniform—for example, if the trees are described by a Yule process
—then the optimal selection criteria are slightly different. In any case, it is
clearly a difficult problem to find (let alone agree upon!) a compelling and bio-
logically reasonable distribution on trees and parameters.

The alternative approach, which is more widely adopted, is sometimes
called maximum relative likelihood (MRL). One simply assumes that the nui-
sance parameters take values that, simultaneously with an optimal tree 7, max-
imize P(DIT,8). Usually one then discards 8 and outputs just the tree(s) T. Such
an approach can be problematic in general statistical settings where data D
depend on both continuous (nuisance) parameters and a discrete parameter x
of interest. In this situation, there may be one ‘unlikely’ value of 6 that for
x =x, gives a higher P(Dlx,0) value than maxeP(Dlx,,0), yet for most ‘likely’
values of © the probability P(Dlx;,0) is less than P(Dlx,,8). This property
means that MRL may make different selections from MIL and it seems to have
been a fundamental issue in the exchange between Felsenstein and Sober
(Felsenstein and Sober, 1986) on the relative merits of MP and ML. Moreover,
in the phylogenetic setting, MRL may select different trees from the MIL
method described above even when all binary trees are equally likely (at least
for certain distributions on the edge parameters of the tree). An example of this
is described later.

For the remainder of this chapter we will generally assume there is no prior
distribution given for trees and edge parameters, and so all forms of ML
involve MRL. With this in mind we review some further distinctions.

Three forms of maximum relative likelihood

In fitting sequence data to a tree, the sequences at the leaves (tips) of the tree
are given, but those at the internal vertices (speciation or branching points) of
the tree are not. In the usual implementation of maximum (relative) likelihood
in molecular phylogenetics, one effectively averages over all possible assign-
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ments of sequences to these internal vertices. Following Barry and Hartigan
(1987) we call this maximum average likelihood, and we denote it as M, L.

However, one could also assign sequences to the internal vertices (along
with the other parameters) so as to maximize the likelihood. Such an approach
was suggested explicitly by Barry and Hartigan (1987) who called it most par-
simonious likelihood, to distinguish it from M,,L. They remarked that most
parsimonious likelihood “is therefore similar to the maximum parsimony fit-
ting technique’. However, it differs slightly from MP in that the other param-
eters (e.g., edge-lengths) must be fixed across all the characters. Likelihood
calculations that place sequences at the internal vertices of a fixed tree have
also been explored by other authors (Koshi and Goldstein, 1996; Pagel, 1999)
where the interest has been primarily in reconstructing, say, ancestral
sequences of proteins (or other characters), rather than in selecting an optimal
tree. Goldman (1990) described a link between MP and most parsimonious
likelihood. He showed that, under a symmetric 2-state mutation model, and
with the artificial constraint that all mutation probabilities on each edge of any
binary tree are equal to some value p, then the MP tree(s) are exactly the most
parsimonious likelihood trees.

Given the most parsimonious likelihood approach, it might seem natural to
carry the approach of assigning ancestral sequences further. That is, one could
select sequences for each time interval right through the tree (jointly with the
other parameters) to maximise the probability of observing the given
sequences at the leaves. Thus, one would associate along each edge of the tree
a series of sequences, corresponding to their evolution at frequently sampled
time intervals.

Such an approach was suggested by Farris (1973), and it was subsequently
referred to as an evolutionary pathway approach—since it is a complete spec-
ification of the sequences through time. Farris showed that the tree(s) that
maximizes the likelihood in this sense are exactly the maximum parsimony
trees. Indeed, the argument is straightforward and requires few assumptions
regarding the underlying model—in particular, it does not require any
assumption about mutations occurring at a slow rate (only that they occur at a
continuous rate) or edge lengths that are constrained in any way. Also, the
equivalence with MP holds with the edge lengths either specified or allowed
to be optimised. Of course there will generally be a huge (potentially infinite)
choice of possible evolutionary pathways of maximal probability; however,
this is not a problem if the value of this maximal probability is all that is being
used to select trees.

As noted by Felsenstein (1978) (see also Sober, 1988, p. 160) the distinc-
tion between M,,L and Farris’s evolutionary pathway likelihood is crucial for
reconciling the apparent paradox between Felsenstein’s claim that ML (but not
MP) is statistically consistent and with Farris’s claim that MP is a ML method.
Both claims are correct; they are simply referring to different forms of ML.
Figure 1 illustrates the three forms of ML we have just discussed.
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Figure 1. Three forms of ML. (a) Maximum average likelihood (M, L): all possible sequences at the
internal vertices contribute to the likelihood; (b) Most parsimonious likelihood: sequences to maxi-
mize the likelihood are placed at the internal vertices; (c) Evolutionary pathway likelihood: sequences
to maximize the likelihood are placed at each position throughout the tree.

A model for which maximum parsimony is a maximum (average)
likelihood estimator

Most parsimonious likelihood and evolutionary pathway likelihood both
involve the specification of a choice of sequences to points inside the tree.
Although a particular selection of sequences may be the most probable, the
attraction of M,L is that it effectively allows all possible assignments of
sequences to the interior of the tree. These are weighted according to their
probability, and then summed up to give the marginal probability of evolving
the sequences observed at the leaves. The question arises then as to whether
MP can be regarded as a M,,L method under some model.

Suppose we take the simplest type of substitution model —the Jukes-Cantor
type model—in which each of the possible substitutions at a site occurs with
equal probability. Now suppose the rates of evolution on each branch of the
tree can vary freely from site to site. In this case we have some constraints on
the underlying type of substitution model (i.¢., Jukes-Cantor type), but no con-
straints on the edge parameters from site to site. We might refer to this as no
common mechanism. This is even more general than the type of approach con-
sidered by Olsen (see Swofford et al., 1996, p. 443) in which the rate at which
a site evolves can vary freely from site to site; however, the ratios of the edge
lengths are equal across the sites. In the Jukes-Cantor style model with no
common mechanism (not even the same rates for different characters) the fol-
lowing theorem applies.

Under the model described (with no common mechanism) the M,,L
tree(s) are precisely the maximum parsimony tree(s).
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A proof of this result is given by Tuffley and Steel (1997b) who generalised an
earlier special case by Penny et al. (1994). The significance of the result should
not be taken as any special justification of MP over usual implementations of
ML; neither does it imply that MP trees are the same as those that ML would
produce under the ‘usual’ models (e.g., Jukes-Cantor with fixed edge lengths).
Rather, the significance is of a more philosophical nature, as it describes a
model in which MP can be regarded as a ML method in the usual ‘average’
ML setting (that is, where one does not select particular sequences for the
internal vertices as part of the optimisation step).

The argument used to establish the above theorem also shows that, under
the Jukes-Cantor type model, if we are given just a tree and a single character
(and no information as to the edge lengths) the ML estimate of the state at any
internal vertex of the tree (given the states at the leaves of the tree) is precise-
ly the MP estimate. For a further link between ML and MP suppose we take
any sequence data and add a sufficiently large number of unvaried sites. Then,
under a Jukes-Cantor style model, the ML tree of this extended data set is
always an MP tree. For details and justification of these last two results see
Tuffley and Steel (1997b).

Of course this type of underlying model (in the above theorem) is almost
certainly too flexible, since it allows many new parameters for each edge. It
might be regarded as the model one might start with if one knew virtually
nothing about any common underlying mechanism linking the evolution of
different characters on a tree (for example, as with some morphological char-
acters).

For processes like nucleotide substitution, as one learns more about the
common mechanisms involved, it would seem desirable to use this informa-
tion. This would lead towards the more usual implementations of maximum
(average) likelihood where the model parameters (such as edge lengths) are
constant across sites. Indeed, advocates of Ockham’s razor (the Principle of
Parsimony) might well invoke the principle at this point, as illustrated by the
following example. Consider sequences of a pseudogene, each sequence being
many thousands of nucleotides long. As a first approximation there is no selec-
tion at any of the sites and therefore it is more ‘parsimonious’ to assume one
common mechanism for all sites, rather than several thousand different mech-
anisms, one for each site. In such a case, the Principle of Parsimony would
support the usual maximum (average) likelihood over using data uncorrected
for multiple changes.

This conclusion should, however, be taken with care. Such a model may not
apply to other sequence data and would not often apply to morphological data
(for example, where the evolution of numbers of legs may differ from that of
wing colour). It is clear that we still need to learn more about the processes
leading to different types of insertion and deletion events in sequence data to
postulate a common mechanism.

e



134 M. Steel
Regions where MP may outperform ML

It is easy to construct examples where M, L will be inconsistent if the model
used in the ML analysis differs from the model that generated the sequences.
What is perhaps more surprising is that MP can perform better than M,,L, even
when the underlying model matches the generating model. These regions of
parameter space have been called the ‘Farris Zone’ (Siddall, 1998) and the
‘anti-Felsenstein Zone” (Waddell, 1996); this phenomenon has been noted by
others (for example Huelsenbeck, 1998; Yang, 1996).

. Here the ‘performance’ of a tree reconstruction method M (on sequence data
- generated under a tree-indexed Markov model) is again taken to mean the
reconstruction probability p(M.T,0) described in Section 2 (the probability that
the method will correctly return the true tree 7). This depends not just on M
but also on T and the parameters on the edges of the tree. Now there exist trees
T and parameters where MP will have a higher probability of returning the
‘true tree’ T than M,,L. In more detail, consider a fully resolved tree T on four
species a, b, ¢, d, with species a, b on one side of the central edge, and species
¢ and d on the other. Consider the simple symmetric 2-state model with muta-
tion probability p(e) =€ on the two edges incident with leaves a,b; while
ple)>0.5 —¢ on the other three edges, where € is small but positive. Thus
three edges have long interspeciation times (or, alternatively, high mutation
rates) and so are near site saturation, while two sister taxa are recently sepa-
rated (or, alternatively, have low mutation rates on their incident edges). Note
that such a situation is entirely possible under a molecular clock, though we
need not insist on this.

Suppose we evolve k sites independently on this tree. Let P,(k) be the prob-
ability that MP recovers the true tree T and let P,(k) be the probability that
M,L recovers T from the k sites. Then, as £ converges to 0 (with k fixed) we
have:

3 2
Pl(k)El—(Z)";Pz(k)Sg

A proof of this result is presented in Steel and Penny (2000) (a similar result
was stated without proof in Székely and Steel (1999)). Notice that for € very
small (but positive), MP will recover T with 99% probability with just 16 sites,
yet M,,L could take potentially millions of sites to achieve the same probabil-
ity of correctly reconstructing T. In that case, for realistic length sequences,
other effects, for example deviations from the model, might have more effect
on the reconstructed tree than the sequence data.

It is tempting to dismiss this example as a triviality by noting that one could
also outperform M,L in this example by simply disregarding the data and
always outputting the tree that groups species a and b together, and ¢ and d
together. However, there is a fundamental difference here, since MP will out-
perform M,,L for any of the three possible underlying trees on four species,
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when the parameters are in the right range. Clearly a trivial method, like the
one described, cannot achieve this. )

While the example described above is somewhat extreme, it still shows there
are cases where we would expect M,,L to require much longer sequences to
recover the true tree than MP mneeds. In fact we actually only require
p(e) > 0.5 — & on two of the three edges, but we have opted to allow three edges
to be near site saturation, since then the example can arise under a molecular
clock. In contrast, the Felsenstein Zone cannot arise under a molecular clock
with four species; yet to be fair, if we want to impose a molecular clock, we
should implement ML with a molecular clock, and then ML no longer behaves
as described above.

The significance of this example should not be overstated—it does not
mean that one ‘should’ be using MP—it may well be that ‘on average’ (under
some prior distribution on trees and their parameters) M,,L outperforms MP,
but it does not globally outperform (in the sense described above) MP. This
example also does not demonstrate statistical inconsistency of M,,L, since if
the edge mutation probabilities are fixed (and strictly between 0 and 0.5), then
M,,L will eventually recover the true tree with probability converging to cer-
tainty as k tends to infinity. This example can also be modified to demonstrate
that M,,L can differ from MIL, even when all trees have equal prior probabil-
ities (provided the prior distribution on the edge lengths is sufficiently con-
trived). Specifically, suppose that each of the three binary trees on sequences
a,b,c,d has equal probability, and that the prior distribution on the edge lengths
allows all possible values for the mutation probabilities, but with probability
1-3, we have p(e) <t on two edges incident with two sister leaves and
p(e) > 0.5 — &, on the other three edges. Then it can be shown that for €, & suf-
ficiently small (but positive), MIL can select a different tree than M,,L on cer-
tain data.

The statistics of parsimony under a null model

In order to carry out hypothesis tests using the parsimony score of a tree, one
needs to know the distribution of this score on a given tree under a suitable null
model for generating characters. This approach has been adopted by a number
of authors, for example Archie and Felsenstein (1993), Maddison and Slatkin
(1991), Goloboff (1991), Steel et al. (1992, 1993b, 1995), Kishino and
Hasegawa (1989).

In this section we describe some exact formulae for this problem under cer-
tain simple null models. Although these results have been in the literature for
several years now, they are not well known, yet they are surprisingly simple
and explicit. We consider first the very simplest such null model. In this case
there are just two character states and each leaf in the binary tree 7 has equal
probability of being assigned either of the two states. The resulting parsimony
score of the character on T is then a random variable, which we denote here as
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L(T). Let P[I(T) = k] denote the probability that this parsimony score takes the
value k. For example, for any binary tree with 4 leaves, we have
PIL(T) = 2] = */,¢ since there are 2* = 16 binary characters and exactly four of
them require two mutations on T. One would like to determine this probabili-
ty distribution, as well as its mean u(T) and variance oX(T). Several authors
(Maddison and Slatkin, 1991; Goloboff, 1991; Archie and Felsenstein, 1993)
have constructed recursive formulae for p(7). However, it is possible to give
exact and explicit formulae, not just for the mean (and variance) but for the
entire probability distribution, as we describe shortly. All of these formulae
depend only on the number of leaves of the binary tree T, and not on its shape
(this surprising, and pleasing property does not extend to characters with more
than 2 states). The explicit formulae for the probability distribution and its
mean (from Steel, 1993) are:

(2n-3k)(n-k-1)12¢"

PIL(T)=k]= Ki(n—2k)!

n-1
) u(T):(?m 2-(-0.5)"")
9
where n is the number of leaves of the binary tree T.

Notice that for at least modest-sized binary trees (that is, when n > 6) we
have the close approximation u(7) ~ n/3 (here and below ‘close’ means that the
difference between the true value and its approximation goes to zero exponen-
tially fast with n). It is instructive to contrast this with the expected value of
L(T) when T is star-shaped (fully unresolved). In that case it can be shown that
W(T) ~ n/2 (Steel, 1993). Thus, the additional edges present in a binary tree
allow one to reduce the expected number of mutations required to fit random
data from approximately n/2 per character (for an unresolved tree) to n/3 (for
a binary tree), a difference of /6 mutations per character. There is also a
slightly more complicated but exact formula for the variance oX(T) (see Steel,
1993), from which one obtains the close approximation:

A(T) ~ 2n/27.

One can extend this very simple null model in three ways— (i) by allowing
more than two character states (ii) by allowing the probability distribution of
the states to be non-uniform and (iii) by allowing the probability distribution
of the states at the leaves to vary between leaves. Extension (ii) recognises that
some states may be more frequent than others, while extension (iii) allows for
phenomena such as GC-variation between different genetic sequences.

Even if we allow all of these three extensions ((i)—(iii)) simultaneously, one
can still efficiently compute the probability distribution of L(T). An algorithm
to do this is described in Steel et al. (1996) and this paper also shows that the
limiting distribution of L(T) converges to a normal distribution as the number
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of leaves in the binary tree T becomes large. This again applies under the
extended null model (allowing (i)—(iii)) subject to a mild technical condition').
Of course if we take the cumulative sum of a large number of characters gen-
erated independently under this (extended) null model, then the parsimony
score of these data on T will also be normally distributed (by the central limit
theorem) regardless of whether 7 has few or many leaves (though if the tree is
large the approximation should be much better for a small number of charac-
ters).

One can also consider the statistics of the “dual” setting where a character
is given, and we wish to find the probability that a binary tree chosen uni-
formly at random has a given parsimony score for that character. Determining
these probabilities provides, for example, a simple formula for the average par-
simony score of a collection of characters over all binary trees (Hamel and
Steel, 1997). Once again, in the case of binary characters there is, surprising-
ly, an exact formula for these probabilities, which we now describe.

First, it is easily seen that the number of binary trees having a given parsi-
mony score on a given character depends only on the numbers of species
assigned the two states. Consequently, if the number of species assigned the
two states is a and b we can denote the probability that a randomly selected
binary tree has parsimony length k by p,(a,b). For example, p,(2,2) = 2/3, since
two of the three binary trees on 4 leaves require exactly two mutations to fit a
character of type 0011. The bichromatic binary tree theorem gives an exact
formula for py(a,b) as follows.

_ (k=1)!2n-30)N(@,k)N(b,k)
Pe(a.b) Bn—k+2)

In this formula, n = a + b is the total number of species, and N(m,k) is the num-
ber of forests consisting of k rooted trees on a total of m leaves, and this is
given exactly by the formula:

2m—k-1!

Nm K= D127

(for 1< k< m), while

2m-4)!
B(m)=—""_"2"
(M) = 122
is the number of binary trees on m labelled leaves (and so B(m) = N(m - 1,1)).
This remarkable formula for p,(a,b) was first established by Carter et al.
(1990) using complicated generating function techniques. However, the com-
binatorial nature of the quantities in the above formula suggested there should

! For some fixed € > 0, and each state o, cach leaf has probability at least £ of being assigned state o.
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be a constructive proof of this theorem based on matching up forests of trees.
Such a constructive proof was given by Steel (1993) and subsequently simpli-
fied by Erdos and Székely (1993). These proofs, and some others involving
parsimony lean heavily on a fundamental property of 2-state parsimony, that
follows from Menger’s theorem in graph theory. For completeness we state
this property (established formally as Lemma 1 in Tuffley and Steel, 1997b) as
follows:

The parsimony score of a 2-state character on a tree T equals the maxi-
mum number of paths that can be placed in T so that (i) each path joins
leaves that are assigned different states by the character, and (ii) no two
paths share any edge of T.

An example of such a path packing is illustrated in Figure 2. This result is an
example of a “min-max” theorem since it relates a quantity we seek to mini-
mize (the number of mutations) to a quantity we maximize (the number of
allowed paths in a packing). A clever extension of this theorem to r-state char-
acters has been obtained by Erdds and Székely (1992).

Furthermore, the distribution of trees according to their parsimony score on
a fixed character becomes normally distributed as n (the number of species)
becomes large, at least for 2-state characters (it is likely also to hold for r-state
characters, though this has not yet been rigorously established). More precise-
Iy Moon and Steel (1993) show that as n grows, p(a,b) becomes normally dis-
tributed (as k varies) with mean pr and variance s°n where

1-
p=2li- 13l S BNH
3 n 2-3u

There has been only limited success in generalising the bichromatic binary tree
theorem to non-binary characters. However, one noteworthy and pleasing
result is an exact formula for the probability that a randomly selected binary

o
>\‘§k a
p p <—5< a
Figure 2. An illustration of the min-max theorem for parsimony score, provided by a tree and a 2-state

character with parsimony score 3. Indicated is a maximal system of three edge-disjoint paths, each of
which joins a pair of leaves assigned different states by the character.
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tree displays no homoplasy for a given r-state character (that is, the character
has parsimony score r— 1 on the tree). For details see Carter et al. (1990) or
Steel (1993).

Conclusion

This chapter highlights two contrasting points: First, the parsimonious
approach suggested by Ockham’s razor can, given information on a common
mechanism, support the usual forms of ML over MP for sequence data.
Second, when we generalise traditional substitution models (like Jukes-
Cantor) sufficiently far—namely to allow different edge parameters at differ-
ent sites—the usual ML approach arrives back at MP. Indeed, as models
become increasingly sophisticated and parameter-rich, one risks losing the
ability to discriminate between different underlying trees. Essentially, this is
because the data may be able to be described perfectly by any underlying tree,
by adjusting the other parameters appropriately. This is a real possibility for
site-substitution models that allow a distribution of rates across sites. Indeed
there are situations where all trees could perfectly describe the same data, pro-
vided one can select, for each tree, a corresponding distribution of rates across
sites (Steel, Székely and Hendy, 1994). The model we described earlier (no
common mechanism), where MP can be regarded as a ML method, clearly
would also have this non-identifiability problem. An interesting problem for
future investigation would be to determine the extent to which a stochastic
model needs to be constrained in order that the underlying tree can be recov-
ered from sufficient data.
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