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Metabolism across all known living systems combines two key features.
First, all of the molecules that are required are either available in the environ-
ment or can be built up from available resources via other reactions within
the system. Second, the reactions proceed in a fast and synchronized fashion
via catalysts that are also produced within the system. Building on early
work by Stuart Kauffman, a precise mathematical model for describing
such self-sustaining autocatalytic systems (RAF theory) has been developed
to explore the origins and organization of living systems within a general
formal framework. In this paper, we develop this theory further by establish-
ing new relationships between classes of RAFs and related classes of
networks, and developing new algorithms to investigate and visualize
RAF structures in detail. We illustrate our results by showing how it reveals
further details into the structure of archaeal and bacterial metabolism near
the origin of life, and provide techniques to study and visualize the core
aspects of primitive biochemistry.
1. Introduction
The process by which life arose from abiotic chemistry on Earth more than 4 bil-
lion years ago remains an outstanding scientific question [1]. Although the precise
details of the origin of life may be difficult or impossible to know with any cer-
tainty, a more realistic goal is how life might have begun; in other words, what
is a scientifically plausible scenario? Although a number of specific proposals
have been put forward, such as the hydrothermal vent scenario of Martin &
Russell [2], there is currently no general agreement on the processes that
led to life. A complicating issue is that the emergence of life requires several
steps to occur, including the establishment of metabolism, containment (e.g. the
formation of a protocell), encoding and replication via a rudimentary infor-
mation-processing system, and natural selection. Nevertheless, comparing the
metabolism of organisms across the tree (or network) of life provides some
clues into the nature of early metabolism. In particular, the metabolic networks
of bacteria and archaea share certain structural features and thereby provide
insights into the nature of early metabolism prior to the separation of these two
domains. A recent study [3] used mathematical and computational techniques
(developed further in this paper) to help identify and investigate these ancestral
features, based on two prokaryotes thought to be close to early life ( justification
for their assumed ancestry is detailed therein). Here, we focus on the metabolism
of one of those prokaryotes, themethanogenic archaeaMethanococcus maripaludis.
Eukaryotes, being more recent (derived from a symbiogenic event between
archaea and bacteria) were excluded from these analyses.

A ubiquitous feature of all life on earth is the ability for an organism’s
metabolism to be simultaneously self-sustaining and collectively autocatalytic.
Systems that combine these two general properties have been studied within a
formal framework, sometimes referred to as RAF theory [4] (RAF refers to
‘Reflexively Autocatalytic and F–generated’, defined in §1.2). This approach
traces back to Stuart Kauffman’s pioneering work on ‘collectively autocatalytic
networks’ [5–7] in polymer models of early life, which was subsequently
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developed further mathematically (see [4,8] and the refer-
ences there-in). RAF theory also overlaps with other
graph-theoretic approaches in which the emergence of
directed cycles in reaction graphs plays a key role (see e.g.
[9–11]). RAF theory has also been applied in other fields,
including ecology [12] and cognition [13]. In this paper, we
extend RAF theory further to provide new techniques for
exploring and visualizing the structure of RAFs and related
concepts, and apply them to large metabolic networks that
are close to early branches of the tree of life. We have
implemented these methods in a new interactive program
called CatlyNet [14].

The structure of this paper is as follows. In the next section,
we summarize the key definitions and results in RAF theory,
and illustrate these concepts on primitive metabolic network
data, from a recent study. We also discuss and clarify some
technical issues concerning bidirectional reactions and cataly-
sis options. In §3, we investigate the finer structure of RAFs
and related entities that can provide further insight into com-
plex metabolic networks. Our emphasis is on approaches that
can be efficiently carried out algorithmically (i.e. in polynomial
time, rather than being NP-hard). In §4, we show how one can
readily identify a unique minimal (core) RAF, if it exists, and
identify the reactions that must have proceeded uncatalysed
initially (though catalysed once the RAF is fully formed). We
also discuss additional complications that arisewhenmolecule
types not only catalyse reactions but can also inhibit them. We
end with some brief concluding comments.
1.1. Preliminary background and definitions
The following definitions are phrased in the language of
chemistry; however, the same formalism and concepts have
been applied in other areas (e.g. ecology, cognition, econ-
omics) by interpreting ‘molecule type’, ‘reaction’, ‘catalysis’
and ‘food set’ in a different setting (for details, see [15]).

A catalytic reaction system (with food set), abbreviated CRS,
is a quadruple Q ¼ (X, R, C, F), where X is a set of molecule
types, R is a set of reactions (defined shortly), C is a subset of
X ×R called the catalysis assignment (which has the interpret-
ation that if (x, r)∈C then molecule type x acts as a catalyst
for reaction r) and F is a subset of X, regarded as the set of
molecule types that are freely available in the environment.

For the setR, we regard a ‘reaction’ as an ordered pair (A, B)
of sets, with the elements in A and B being subsets of X.
The interpretation here is that the molecule types inA combine
to produce the molecule types in B. The sets A and B are
referred to, respectively, as the reactants of r (denoted ρ(r))
and products of r (denoted π(r)). We will let p(R0) ¼ S

r[R0 p(r)
denote the set of molecule types that are a product of at least
one reaction from R0. Throughout this paper, we will often
denote reactions by using arrows, and catalysis with square
brackets. For example, if reaction r combines molecule types a
and b to generate x, and r is catalysed by either y or z we
write r : aþ b [y, z] �! x:

Note that chemical reactions also typically involve stoi-
chiometric considerations, where more than one molecule
may be required as a reactant (or produced as a product).
For example, the reaction r : 2aþ b �! xþ 3y leads to the
sets ρ(r) = {a, b}, π(r) = {x, y} and thereby ignores multiplicities.
In RAF theory, treating the reactants and products as sets
(rather than multisets) simplifies the theory and statement
of the results, generally leads to no substantive differences
than if stoichiometry had been modelled explicitly. Similarly,
reactions that are bidirectional can also be handled within
the existing (directional) framework, as we describe in §2.3.
We also point out here that RAF theory does not explicitly
use kinetic features of reaction systems; in other words, it is
based on a ‘minimalistic’ and ‘high-level’ description of a
CRS based on a discrete notion of ‘catalysis’ (and later also
‘inhibition’). This has two advantages: (i) it allows for a
high level of generality, and the development of a variety of
theorems and fast algorithms, and (ii) it can be applied to
large and complex systems for which detailed kinetic infor-
mation (reactions rates etc.) is not available. Nevertheless,
the inclusion of rate information in RAF theory has been
investigated in recent work [15], and is a topic that would
benefit from further work in the future.

1.2. RAFs, CAFs and pRAFs
Given a CRS Q ¼ (X, R, C, F), subset X0 of X and a subset R0

of R, we say that X0 is closed relative to R0 if X0 satisfies the fol-
lowing property: for all r∈R0, ρ(r)⊆X0⇒ π(r)⊆X0. In other
words, for each reaction r in R0 that has all its reactants
present in X0, every product of r is also in X0.

Given a subset R0 of R, clR0(F ) is the intersection of all sub-
sets X0 of X that contain F and are closed relative to R0. This is
well defined, since the full set of molecule types X is closed
relative to any subset of R. The set clR0(F ) has a simple
interpretation: it is the set of molecule types in F together
with any other molecule types x in X for which x can be gen-
erated from F by some sequence of reactions from R0 where
each reaction in this sequence has each of its reactants present
in F or is a product of an earlier reaction in the sequence.
Moreover, clR0(F ) can be computed quickly (in polynomial
time in the size of Q ) [16].

If R0 has the property that each reaction in R0 has its reac-
tants in clR0(F ), then R0 is said to be F-generated. In other
words, R0 is F-generated if all reactants required for any reac-
tion in R0 can be built up starting from the food set by
applying only reactions in R0. By lemma 3.1 of ([17]), R0 is
F-generated if and only if the following condition holds:

— R0 can be ordered r1, r2, …, rk so that, for each i≥ 1, each
reactant of ri is contained in the food set and/or is a pro-
duct of an earlier reaction in the sequence.

Given a CRS Q, a subset R0 of R is a RAF (respectively,
CAF or pRAF) for Q if R0 = ; and the following conditions
hold, respectively:

[RAF] Each reaction in R0 has at least one catalyst present in
F< p(R0) and R0 is F-generated.

[CAF] R0 can be ordered r1, r2,…, rk so that, for each i≥ 1, each
reactant of ri and at least one catalyst of ri is contained in
the food set and/or is a product of an earlier reaction in
the sequence).

[pRAF] For each r∈R0, each of the reactants of r and at least
one catalyst of r are contained in F< p(R0).

It is clear from these definitions that every CAF is a RAF
and every RAF is a pRAF. Notice that a pRAF is a RAF if and
only if the pRAF is also F-generated (the extra condition that
a pRAF requires in order to be F-generated can be stated in
terms of a certain graph on the set of reactions having no
directed cycle1).



Table 1. Abbreviations used throughout this paper (with section numbers).

abbreviation name

CRS catalytic reaction system, (§1.1)

RAF reflexively autocatalytic and F-generated set (§1.2)

CAF constructively autocatalytic and F-generated set

(§1.2)

pRAF pseudo-RAF set (may not be F-generated) (§1.2)

subRAF RAF set that is a strict subset of the maxRAF (§1.3)

maxRAF maximal RAF (unique) (§1.3)

maxCAF

max-pRAF

maximal CAF (unique) and maximal pRAF (unique)

(§1.3)

irrRAF irreducible (minimal) RAF set (§1.3)

uRAF uninhibited RAF set (defined later in §4.4)
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Figure 1. (a) A CRS system (from [18]) with food set F = {s, t, u}, which
forms a RAF. This is also an irrRAF but is not a CAF (and does not contain
a CAF). (b) A simple example of a pRAF that is not a RAF.
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The abbreviation ‘RAF’ comes from the two conditions in
the definition (RA=Reflexively Autocatalytic; F=F-generated).
An equivalent definition of a RAF is as a non-empty subset R0

of R for which every reaction has all its reactants and at least
one catalyst present in clR0(F ). Similarly, CAF refers to con-
structively autocatalytic and F-generated, and pRAF refers
to pseudo-RAF (it need not be F-generated).

One may also consider extra conditions to avoid trivialities
in the above definition of a RAF. For example, a RAF, CAF or
pRAF R0 may be required to contain at least one reaction that
generates a molecule type that is not found in the food set.
Such conditions can usually be handled by simply modifying
the CRS (e.g. in the case described, removing each reaction
that has no product outside the food set from R).

1.3. Maximal and minimal sets
Since the union of any collections of RAFs (respectively, CAFs
or pRAFs) for Q is a RAF (respectively, CAF or pRAF) for Q,
it immediately follows that when a RAF, CAF or pRAF exists,
there is a unique maximal one called the maxRAF, maxCAF
and max-pRAF, respectively. Moreover, these can be found
by a fast (polynomial-time) algorithm, which also correctly
reports whether a RAF, CAF or pRAF is present [16].

A RAF that is a strict subset of the maxRAF is sometimes
called a subRAF, and we say that R0 is an irreducible RAF
(irrRAF) for Q if R0 has no subRAF. Clearly, any RAF of size
1 is an irrRAF; a CAF is an irrRAF if and only if it has size
1. When a CRS has a RAF, finding an irrRAF is easy (being
polynomial time in the size of Q ) but finding the smallest
RAF for Q (which is necessarily an irrRAF) is NP-hard [17].

As a number of acronyms and abbreviations are used
throughout this paper, we summarize these in table 1, which
also indicates the section where each abbreviation is defined.

1.4. Examples
Consider the system (from [18]) involving three catalysed
reactions with X = {s, t, u, st, su, stu} and with food set
F = {s, t, u}:

r1 : sþ t [stu] �! st,
r2 : sþ u [stu] �! su

and r3 : stþ u [su] �! stu
The set {r1, r2, r3} forms a RAF (but not a CAF) for this CRS;
moreover, this RAF is also an irrRAF, since all three reactions
are required for a RAF to be present in any RAF. An example
of a pRAF that is not a RAF is given by the following system:

r1 : f1 þ x [y] �! yþ z

and

r2 : f2 þ y [x] �! xþ z0,

where { f1, f2} denotes the food set. These two systems are
shown in figure 1.

A second, more complex example is the laboratory-based
autocatalytic ribozyme system from [19] analysed in [20] con-
sisting of seven reactions that constitute a RAF. This maxRAF
is also not a CAF (nor does it contain a CAF); however it con-
tains 66 other RAFs as subsets. Formally, this system has food
set F = { f} and seven reactions

r1 : f[x1] �! x1,
r2 : f[x1] �! x2,
r3 : f[x1] �! x3,
r4 : f[x2, x5, x7] �! x4,
r5 : f[x2, x5, x7] �! x5,
r6 : f[x3, x4, x6] �! x6

and r7 : f[x3, x4, x6] �! x7
1.5. Relationships between RAFs, CAFs, pRAFs and
related notions

We now describe the main differences among the notions of
CAF, RAF and pRAF more informally. A CAF is a system
of reactions that can start with the food set and build itself
up in such a way that when a reaction occurs not only are
all of its reactants available (either from the food set or as
products of other earlier reactions) but at least one catalyst
is as well. By contrast, a RAF can initially allow one or
more reactions to proceed uncatalysed (and hence slowly);
the requirement is simply that, eventually, all reactions in
the RAF must be catalysed. A pRAF is slightly different; it
is a subset of reactions where all the reactants and catalysts
required are either in the food set or produced by some
reaction. However, the system may not be able to build
itself up from scratch (even slowly without catalysis) by just
starting from the food set. In other words, once a pRAF
exists, it can persist, but it may not be able to form in the
first place, starting from just the food set, because some reac-
tants for a reaction may not be available (as they can only be
produced by subsequent reactions). Nevertheless, pRAFs
may still play a role in the origin of life-like systems.
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For example, consider a chemical reaction system comprising
the reactions {r1, r2}, where:

r1 : xþ f1[f2] �! y

and

r2 : yþ f1[f2] �! xþ x;

together with a food set F = { f1, f2}. This system is a pRAF, and
so it cannot form just from this food set (this conclusion does
not depend on the stoichiometry in r2 where two copies of x
are produced rather than one, however the following argu-
ment does depend on this stoichiometry). Now suppose
that x becomes available from some environmental source
(and so is added to the food set F) and then this source dis-
appears again (perhaps due to some transient biochemical
or geological event). In that case, the pair of reactions {r1,
r2} is able to generate an increasing supply of molecule type
x for this pRAF to continue indefinitely. We plan to test for
this type of scenario in future work.

The distinction between CAFs and RAFs may seem subtle
but it has significant impacts: firstly, CAFs typically require
much higher rates of catalysis and/or a much richer food set
to form in model systems [21]. Furthermore, systems can
have a very large number of subRAFs, whereas the number
of CAFs is typically small, so the population of RAFs in a
system is generally much richer than that of CAFs. Accord-
ingly, we often focus more on RAFs, particularly for
questions involving origins, where catalysts may have initially
been rare (precluding CAFs) and where no other existing life
was present to kick-start metabolism (precluding pRAFs).

RAFs are related to Robert Rosen’s (M,R) systems (as
described in [22]; see also [23]), and have a connection to
‘chemical organization theory’ [24]. This second connection
arises because if R0 is F-generated (e.g. a RAF or a CAF) and
if we assume that the food molecules are being freely made
available from some source, the closed set of molecules clR0(F )
has an assignment of strictly positive reactions rates v so that
Sv≥ 0, where S is the stoichiometric matrix for the system
(i.e. each non-food molecule is generated at least as fast as it
is used up), by lemma 4.1 of [17]. Other dynamical aspects of
RAFs concerning reaction rates have been explored in [15,20],
and related dynamics have been explored recently by [25,26].
2. Applications and observations
2.1. Application
In [3], the metabolism of two ancient prokaryotic species was
explored for the presence of maxRAFs. Here, we use the net-
work of one of those species, Methanococcus maripaludis, to
explore the differences between the maxRAF, maxCAF and
max-pRAF. The food set is FS2 detailed in table S1 of [3],
including inorganic molecules, inorganic catalysts and abiotic
organic carbon — with the addition of nicotinamide adenine
dinucleotide (NAD) as the sole organic catalyst (44 molecule
types in total). We chose NAD as it was the organic catalyst
with the highest impact on the maxRAF size. The network is
the same as reported for M. maripaludis in [3] with 965 reac-
tions including pooling reactions (operational reactions that
equate synonymous cofactors). The sizes for maxRAF,
maxCAF and max-pRAF reported next (produced by the
software CatlyNet [14]) also include pooling reactions.
With this new food set, which tests the network in an abio-
tic setting where NAD was generated by the environment, we
obtain a maxCAF with 12 reactions using 20 food molecules,
and amaxRAFwith 84 reactions using 34 foodmolecules (elec-
tronic supplementarymaterial, Part 2). Note the largemaxRAF
expansion thatNADalone allows for (one orderofmagnitude),
as with the same food set without NAD, the maxRAF for M.
maripaludis consisted of eight reactions only (see table S1 in
[3]). We note that in this experiment, the maxCAF allows for
the production of two amino acids, L-alanine and L-cysteine,
and the maxRAF allows for the production of those and also
L-aspartate. It is also important to note that the max-pRAF
(which has size 540 reactions using 38 food molecules) is far
from the size of the full network.

2.2. Visualisation and exploration
Oneway tovisualize aRAF is as a graph inwhich thenodes rep-
resent reactions and there is an edge from reaction r1 to r2 if r2
‘depends’ on r1. Here, there are two ways to define ‘depend’:

(i) r2 requires a product from r1 as an input reactant or
input catalyst, or

(ii) r2 requires a product from r1 as an input reactant.

We call (i) a dependency graph and (ii) a reactant dependency
graph. Figure 2 shows these graphs for the archaeal dataset
described in the previous example (a maxRAF of size 84,
containing a maxCAF of size 12, with a food set of size 44).

2.3. Bidirectional reactions and catalysis options
One can easily extend the definition of a CRS and RAFs (and
CAFs) to allow some reactions in R to be bidirectional (i.e.
reversible) by regarding such reactions to be a pair of (ordinary)
directed reactions, a feature common inmetabolic networks [3].
For example, a reaction r such as r : aþ b [x, y] ! cþ d can be
regarded as the pair of reactions {r+, r−}, where r+ is the forward
reaction aþ b [x, y] �! cþ d and r− is the backward reaction
cþ d [x, y] �! aþ b.

Given a CRS Q ¼ (X, R, C, F) where R includes one or
more bidirectional reactions, let R± be the set of (ordinary,
directed) reactions in which each bidirectional reaction r∈R
is replaced by r+ and r−. For any subset R1 of R, define R+

1
similarly. Let Q+ ¼ (X, R+, C+, F) be the corresponding
CRS, where C± is the catalysis assignment in which a catalyst
x of r is a catalyst of r+ and r−.

If {r+} or {r−} is a RAF for Q+, then it can readily be
checked that {r+, r−} is a RAF for Q+. However, if {r+, r−} is
a RAF for Q+, it is possible that either {r+} or {r−} may fail
to be a RAF for Q+. To see this, consider the following
forward reaction: rþ : f1 þ f2, [x] �! g, where f1, f2∈ F, g, [ F
and x is either in F or equal to g. In this case, {r+} and {r+,
r−} are both RAFs but {r−} is not. Nevertheless, it is easily
seen that at least one of these two singleton sets must
be a RAF for Q+. The following proposition generalizes
this observation; its proof is provided in the electronic
supplementary material.

Proposition 2.1. Let Q ¼ (X, R, C, F), where R includes one or
more bidirectional reactions and let R1 be a subset of R. Then
R+
1 is a RAF (respectively, CAF) for Q+ if and only if there

exists a subset R01 of R+
1 that is a RAF (respectively, CAF) for

Q+ and satisfies the following condition:

jR01 > {rþ, r�}j ¼ 1 for all bidirectional reactions r [ R1:
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Figure 2. The dependency graph (a) and the reactant dependency graph (b) for the maxRAF of size 84 of the archaea dataset described in §2.1 (which involved 965
reactions). In both cases, the graphs have a vertex set equal to the reactions in the maxRAF, and the edges are directed with an arc from r to r0 whenever a product
of r is either a reactant or a catalyst of r0 ( for the dependency graph) or when a product of r is a reactant of r0 ( for the reactant dependency graph). Reactions also
present in the maxCAF are highlighted in blue. Figures were generated using CatlyNet.
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Moreover, if R2 is nested between R01 and R1 (i.e. R01⊆ R2 , R1),
then R2 is a RAF (respectively, CAF) for Q+.

We can now extend the definition of RAFs (and irrRAFs)
to CRS systems in which none, some or all the reactions are
bidirectional. We say that a non-empty subset R1 of R is a
RAF for Q if R+

1 is a RAF for Q+ (which, by proposition
2.1, is equivalent to the condition that each bidirected reac-
tion in R1 can be replaced by either the forward or
backward reaction to give a RAF for Q+). Furthermore, we
say that such a RAF R1 is an irrRAF for Q if no strict subset
of R1 is a RAF. Note that a single bidirectional reaction that
is a RAF is necessarily an irrRAF (even though it may be
the case that one of the directed versions of the reaction is a
RAF). Analogous definitions apply for CAFs.

Note that in counting the number of reactions in a RAF, CAF
or pRAF, bidirectional reactions are counted as a single reaction
(rather than two). We end this section with a remark. A main
reason that RAF theory is based on the notion of directed
rather than bidirectional reactions is to allow greater generality
in theory; for example, to certain RAF settings outside chem-
istry, and to situations in biochemistry where either the rate
laws are absent or unknown, or the reaction proceeds overwhel-
mingly in one direction. A second reason is that including
bidirectional reactions can be easily described within this direc-
tional framework, as we have seen, if one were to take
bidirectional reactions as a primitive notion to found RAFs
on, then it is problematic to describe how RAF theory would
handle directed reactions without explicitly invoking further
additional notions and information such as reaction rates.

Distinctions between catalysts and reactants: often, a catalyst
is represented by a molecule type that appears as both a reac-
tant and a product. For example, the catalysed reaction
r : aþ b [y] �! x could be viewed as

aþ bþ y �! xþ y,

whereas the catalysed reaction r : aþ b [y, z] �! x could be
represented by a pair of reactions

r1 : aþ bþ y �! xþ y
and

r2 : aþ bþ z �! xþ z:

By doing this expansion, we can easily see that a CRS Q con-
tains a CAF if and only if the expanded reaction system
contains a (non-empty) F-generated subset. However, the
same is not true for RAFs. For example, consider the pair
of reactions:

r1 : f1 þ f2 [x] �! y

and

r2 : f1 þ f3 [y] �! x

with food set F = { f1, f2, f3}. Then {r1, r2} is a RAF however, for
the expanded version

r01 : f1 þ f2 þ x �! yþ x

and

r02 : f1 þ f3 þ y �! xþ y

the pair {r01, r02} fails to be (or contain) an F-generated
set. However, if one now adds the two additional (slow)
reactions r001 : f1 þ f2 �! y, and r002 : f1 þ f3 �! x to r01 and r02,
then the resulting system of four reactions now becomes an
F–generated set.

Allowing some reactions to not require catalysis, and complex
catalysis rules: the requirement in a RAF/CAF/pRAF that all
reactions be catalysed is sometimes overly severe (including
in metabolism [3]). However, it is no problem to extend the
definition of RAFs, CAFs and pRAFs to allow certain pre-
specified reactions to not require catalysis. Formally, the
easiest way to do this within the existing framework (and
so that all the results, statements and theorems derived for
RAFs, CAFs and pRAFs remain true) is simply to replace
each pre-specified reaction r that does not require catalysis
by adding (x, r) to the catalysis assignment C, for some mol-
ecule type x, which could be chosen from ρ(r) or from the
existing food set; alternatively, as in [3], x can be added as
a formal catalyst for r to the food set.
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Complex catalysis rules allow for reactions to not only be
catalysed by molecule types, but also combinations of two or
more molecule types (provided they are all present). This can
be incorporated into the standard setting (of simple catalysis)
by introducing additional auxillary reactions (for details,
see [15]).

The role of the food set: given a CRS Q ¼ (X, R, C, F), sup-
pose we replace all of the food elements by a single
element (call it f ), and replace the set of food reactants and
food catalysts of each reaction by { f}, while leaving catalysis
unchanged otherwise. This simplified CRS Q0 has RAFs,
CAFs and pRAFs that correspond exactly to those of Q.
While this simplification can be useful, there are certain ques-
tions for which the details of the food set and its role in
reactions becomes important. For example, two topical ques-
tions in early metabolism are the following: (i) given a CRS
Q ¼ (X, R, C, F), what is a largest number of elements of the
food set that one can remove so that Q still has a RAF?
(ii) Which elements of the food set have the greatest impact on
the size of the RAF obtained? It can be shown that question
(i) is NP-hard (by a reduction from the NP-complete problem
SET COVER). The related question of how much of the food
set can be removed so as to not alter the maxRAF was
considered in [27], where it was shown to be also NP-hard.
3. Structural properties of RAFs, CAFs and pRAFs
We begin this section with a definition and some preliminary
observations.

Given a CRS Q ¼ (X, R, C, F), let 2R denote the power set
(the collection of all subsets) of R and let wRAF : 2

R→ 2R be the
function defined as follows: for any subset R0 of R, wRAF(R0) is
the (unique) maximal RAF of Q that is entirely contained
within R0, provided that R0 contains a RAF for Q; otherwise,
wRAF(R0) ¼ ;. Formally stated

wRAF(R
0) ¼

[
{R00 # R0 : 8r [ R00, r(r) # clR00 (F) and 9x

[ clR00 (F) : (x, r) [ C}:

Note that the function w = wRAF satisfies the following
three ‘interior operator’2 properties: For all R0⊆w(R)

(I1): w(R0)⊆R0,
(I2): R0 ⊆R00⇒ w(R0)⊆ w(R00) and
(I3): w(w(R0)) = w(R0).

An immediate consequence of (I1) and (I2) is that wRAF(R0)
is contained in the intersection of R0 and the maxRAF of R.
One can define wCAF and wpRAF in a similar manner, and
these also satisfy the three interior properties.

3.1. Intersection systems involving RAFs, CAFs and
pRAFs

A question that arose in the analysis of [3] is: when is the
maxRAF of the intersection of two sets of reactions the
same as the intersection of the two maxRAFs? We explore
this question formally, beginning with a further definition.
Recall that for a CRS Q ¼ (X, R, C, F), and a subset R0 of R,
wRAF(R0) denotes the subset of R consisting of the maxRAF
of Q when R is replaced by R0, provided that this maxRAF
exists; otherwise wRAF(R0) ¼ ;. Note that wRAF(R0) is always
a subset of R0. The proof of the following theorem is given
in the electronic supplementary material.

Theorem 3.1. Let Q ¼ (X, R, C, F) be a CRS that has a RAF.

(a) For any two subsets R1 and R2 of R (which are not necessarily
RAFs), the following identity holds:

wRAF(R1 > R2) ¼ wRAF(wRAF(R1)> wRAF(R2)):

(b) The maxRAF of the intersection of two sets of reactions is a
subset of the intersection of the two maxRAFs; moreover, the
inclusion is strict if and only if the intersection of the two max-
RAFs is not a RAF.

Application: let RA and RB be the subsets of reactions in
the metabolic network of ancient archaea and bacteria for
the CRS Q ¼ (X, R, C, F) investigated in [3]. As mentioned
in §1.1, reactions common to both archaea and bacteria pro-
vide candidates for reactions that were present closer to the
origin of life before these two domains separated. Here,
|RA| = 965 and |RB| = 1238 and the food set has size 68
(including all organic catalysts). In this case, w(RA) (the
maxRAF of the CRS with the archaea reaction set RA) has
size 221, and w(RB) (the maxRAF for the CRS with the bac-
terial reaction set RB) has size 411. Both these maxRAFs are
also maxCAFs. Moreover, the intersection of these two max-
RAFs (i.e. w(RA)> w(RB)) has size 184, and the maxRAF for
this set of reactions (i.e. w(w(RA)> w(RB))) contains a
maxRAF of size 131. By theorem 3.1(a), this maxRAF of
size 131 is also the maxRAF of RA > RB.

The question now arises as to why this maxRAF is more
than 50 reactions smaller than the intersection of the
two maxRAFs w(RA)> w(RB). Here, theorem 3.1(b) is relevant.
The max-pRAF of RA > RB has size 178, which is just six
(¼ 184–178) reactions fewer than the size of the intersection
of the two maxRAFs (so most reactions in the intersection are
catalysed by either a product of intersection or an element of
the food set). This suggests that the failure of the F-generated
condition may cause the greatest reduction. In other words,
there are different reactions in the archaeal and bacterial net-
works that produce essential reactants for reactions in the
intersection, reactants which are not in the food set. This
result may reflect divergent evolution from a common ancestor
or a redundancy already present at the origins of metabolism,
and would benefit from further investigation.
3.2. Refining the notions of RAFs, CAFs and pRAFs
So far, RAF theory has paid minimal attention to thermodyn-
amic and kinetic considerations. One way to extend the
theory in this direction is the following, which generalizes
an approach in [15]. Suppose that R0 is a RAF for Q (a directly
analogous treatment is possible also for CAF and pRAFs). For
each reaction r∈R0, let ν(r, R0) be an associated non-negative
score. For example, if different catalysts for a reaction lead to
different rates, then we could let ν(r, R0) be the maximal cat-
alysis rate of r across all catalysts that are produced by R0 (or
present in the food set). Note that such a scoring function
satisfies the following monotonicity property:

r [ R0 # R00 ) n(r, R0) � n(r, R00): (3:1)
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Figure 3. A seven-reaction system that comprises a RAF (from [20] based on
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set of reactions, though in general this is not necessary), and this maxRAF
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alysis. Figure produced by CatlyNet.
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For t≥ 0, let RAFn,t(Q) be the set of RAFs R0 for Q for which:

n(r, R0) � t for all r [ R0: (3:2)

Thus for this interpretation of ν(r, R0) in terms of rates, a
RAF in RAFn,t(Q) is one for which all reactions in R0 are
able to proceed at a rate of at least t. However, one could
also consider other types of functions ν that satisfy the
monotonicity property (3.1).

The following theorem provides an immediate algorithm
that is polynomial-time (in the size of Q ) that determines
whether or not Q has a RAF that satisfies condition (3.2)
and, if so, constructing a unique maximal one, provided
that ν satisfies condition (3.1). The proof is provided in the
electronic supplementary material.

Theorem 3.2. LetQ ¼ (X, R, C, F) be a CRS with a RAF, and con-
sider any scoring function ν that satisfies condition (3.1). If
RAFn,t(Q) = ; then RAFn,t(Q) has a unique maximal element
Rn,t(Q) and this set is the terminal set Rk of the followingnested decreas-
ing sequence of subsets: R ¼ R0 . R1 . � � � . Rk(¼Rkþ1), where

Riþ1 ¼ wRAF({r [ Ri : n(r, Ri)) � t}),

for i= 0, …, k− 1. On the other hand, if RAFn,t(Q) ¼ ;, then the
nested decreasing sequence Ri terminates with Rk ¼ ;.

3.3. A generalization, applying theorems 3.1 and 3.2
Given a CRS Q, suppose that we have a collection of func-
tions (wa : 2R ! 2R; a [ A) that satisfy the interior operator
properties (I1)–(I3) described earlier. Consider the following
partial order W on A, defined by:

a W a0 , for all R0 # Rone has wa(R
0) # wa0 (R

0): (3:3)

For example, we could take A ¼ {0, RAF, CAF,
pRAF, 1}, where 0 and 1 refer to the functions 0(R0) ¼ ; and
1(R0) =R0 for all R0 ∈R. For this choice of A, we obtain a
total ordering

0 W CAF W RAF W pRAF W 1:

A larger class is obtained by considering RAFn,t(Q) as
described in §3.2, where ν satisfies condition (3.1) and with t
fixed. In that case, consider the function wRAFn,t that maps each
subset R0 of R to the unique maximal RAF contained in R0 that
satisfies condition (3.2) (or to the empty-set if no such RAF
exists). Such a function is well defined by theorem 3.2 and it
satisfies properties (I1)–(I3). Similarly, we can consider CAFn,t(Q)
and pRAFn,t(Q), where ν again satisfies condition (3.1),

We then have: RAFn,t0 W RAFn,t W RAFn,0 ¼ RAF for all
0≤ t≤ t0, and similarly for CAFs and pRAFs. The collection
A ¼ {0, 1}<

S
t�0 {RAFn,t, CAFn,t, pRAFn,t, 1} is then a par-

tially ordered set that includes CAF, RAF and pRAF, and
with RAFn,t W CAFn,t W pRAFn,t for each given t.

We can now state and establish a generalization of theo-
rem 3.1(a), the proof of which is provided in the electronic
supplementary material.

Theorem 3.3. Given a CRS Q ¼ (X, R, C, F), let (wa, a [ A) be
any collection of RAF, CAF or pRAF operators (as described above)
that satisfy conditions (I1)–(I3), and where A is partially ordered by
(3.3). Let R1 and R2 be any two subsets of the reaction set R and let
a, b, b0 [ A satisfy α≤ β and α≤ β0. Then:

(i) wa(wb(R1)) ¼ wb(wa(R1)) ¼ wa(R1).
(ii) wa(wb(R1)> wb0 (R2)) ¼ wa(R1 > R2):
Remark. Theorem 3.1(a) corresponds to the case α = β = β0 =
RAF in part (ii) of theorem 3.3. As another (typical, but ran-
domly chosen) application of theorem 3.3(ii), the maxCAF of
the intersection of the R1 and the pRAF of R2 is always the
same as the maxCAF of the intersection of the maxRAF of
R1 and the maxRAF of R2 (both are equal to the maxCAF
of R1 > R2 ).

3.4. Closed RAFs, and quotient RAFs
Let Q ¼ (X, R, C, F) be a CRS and let R0 be a non-empty
subset of R. We say that R0 is a closed subset of R if it has fol-
lowing property: for each reaction r in R (the full reaction set),
if all of the reactants of r and at least one catalyst of r are pre-
sent in F< p(R0) then r is present in R0. The closure of a R0,
denoted R0, is the intersection of all closed subsets of R con-
taining R0. Since the full reaction set R is (trivially) closed,
the definition of closure is well defined and R0 is closed
(indeed, R0 ¼ R0 if and only if R0 is closed).

Let C[Q] denote the set of closed non-empty subsets of
reactions in Q and let CRAF[Q] denote the set of all closed
RAFs for Q. Define CCAF[Q] and CpRAF[Q] similarly. Closed
RAFs correspond to a particular type of ‘chemical organiz-
ation’ within the framework of ‘chemical organization
theory’ [28] and also play a central role in the recent
semigroup-based approach of [29]. For the experimental
system shown in figure 3, this RAF contains one other
closed RAF (namely {r4, r5, r6, r7}) and 65 other RAFs that
are not closed.

When Q has a RAF (respectively CAF or RAF), then the
maxRAF (respectively, maxCAF or max-pRAF) is closed.
The maxRAF may contain many closed RAFs as strict sub-
sets, however, determining whether the maxRAF contains a
closed RAF as a strict subset has recently been shown to be
NP-hard [30]. By contrast, the maxCAF contains no other
closed CAF. Indeed, Q has a CAF if and only if C[Q] = ;,
in which case C[Q] ¼ CCAF[Q], which consists just of the
maxCAF for Q. It can be shown that a closed RAF R0 for a
CRS Q is fully determined by Q and r(R)< p(R0) and can
be reconstructed from this set ([31], lemma 1).
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A minimal closed RAF is a closed RAF that contains no
closed RAF as a strict subset. A particular example of a
minimal closed RAF is a closed irrRAF.

Note that a CRS that has a RAF contains at least one mini-
mal closed RAF (since the maxRAF is a closed RAF);
however, the CRS may not contain a closed irrRAF. Note
also that the closure of an irrRAF for Q is not necessarily a
minimal closed RAF for Q. Consider, for example, the CRS
consisting of r1 : f1 þ f2 [x] �! x and r2 : f2 þ f3[f2] �! y (with
F = { f1, f2, f3}) and the irrRAF {r1}, the closure of which is
{r1, r2}; this is not a minimal closed RAF, since it contains a
smaller closed RAF, namely {r2}. However, the opposite con-
tainment holds as we now state (the short proof is in the
electronic supplementary material).

Proposition 3.4. Let R0 be a RAF for Q ¼ (X, R, C, F). If R0 is a
minimal closed RAF for Q, then R0 is the closure of an irrRAF of Q.
Moreover, R0 equals the closure of any irrRAF contained in R0.

Note that every subset RAF R0 is contained in a unique
minimal closed RAF, called the closure of R0, denoted R0

and defined by

R0 ¼
\

{R00 [ CRAF[Q] :R0 # R00}:

This definition extends to the setting discussed earlier
where the CRS Q contains bidirectional reactions. In that
case, we say that a subset R1 of reactions is a closed RAF for Q
if R+

1 is a closed RAF for Q+. It can be shown that if R1 is a
closed RAF for a CRS Q that contains bidirectional equations,
then: jR+

1 > {rþ, r�}j ¼ 2 for all bidirectional reactions r [ R1:
3.5. Quotient RAFs
This idea of looking at quotient structures in RAF theory is
motivated in part by [32], where techniques from algebra
were suggested as an approach for deriving a coarse-grain
description of complex biochemical reaction networks. How-
ever, the construction of a quotient here is somewhat
different. Given a CRS Q ¼ (X, R, C, F) and a subset R0 of
R, let Q=R0 be the CRS obtained from Q by deleting R0

from R (i.e. replacing R by R n R0) and adding all products
of all reactions from R0 into F. The proof of the following
result is given in the electronic supplementary material.

Theorem 3.5. Let Q ¼ (X, R, C, F) be a CRS that has a RAF, and
let R0 ⊊R.

(a)
(i) If R00 is a RAF for Q with R0 ⊊R00, then R00 n R0 is a RAF

for Q=R0.
(ii) If R0 is a RAF forQ and R* is a RAF forQ=R0, then R0 �<R�

is a RAF for Q.
(iii) If R0 is closed, then Q=R0 has no CAF.
(b)
If R0 is a RAF for Q, then maxRAF(Q=R0) ¼ maxRAF
(Q) n R0:

We refer to a RAF R00 n R0 in theorem 3.5(a–i) as a quotient
RAF for the (quotient) CRS Q=R0. Note that R00 nR0 is not
necessarily a RAF for Q; instead, it is a set of reactions
that can be added to a RAF to create a larger RAF (called a
‘co-RAF’ in [17] or ‘periphery’ in [33]).
A particular case of interest is where R00 is the maxRAF for
Q and R0 is the maxCAF forQ. In that case, part (b) states that
the maxRAF of Q=maxCAF(Q) is obtained from the maxRAF
of Q by deleting the maxCAF of Q (moreover,Q=maxCAF(Q)
has no CAF by part (a–iii)). For the global anaerobic prokar-
yotic metabolism dataset (consisting of 6029 reactions, from
the study in [3]), this has a maxRAF of size 580 and a
maxCAF of size 239, so the quotient RAF (taking R0 to be
the maxCAF and R00 to be the maxRAF) has size 580−
239 = 314.
4. Special types of RAFs and reactions
In this section, we introduce and explore two new notions in
RAF theory.

4.1. Core RAFs
For any CRS Q, the set of its RAFs forms a partially ordered
set (poset) under subset inclusion, with a unique maximal
element, namely the maxRAF. The minimal elements of
this poset are the irrRAFs; in general, there may be (exponen-
tially) many of these. A natural question is: when does Q
have a unique minimal RAF (i.e. a RAF R0 that a subset
of every other RAF for Q)? We call such a RAF, when it
exists, a core RAF (this is different from the notion of ‘core’
in [33] which is closer to irrRAF). Clearly, if Q has a core
RAF, then it has only one. Furthermore, a core RAF for Q
will be the unique smallest RAF for Q, so a first approach
might be to develop an algorithm to find the smallest
RAF in a CRS. However, this problem turns out to be
NP-hard in general [17], so we need an alternative
strategy. Note also that a core RAF for Q exists if and only
if Q has exactly one irrRAF; however, there is no efficient
algorithm known for counting the number of irrRAFs.
Nevertheless, the following result provides a fast way to
determine whether or not Q has a core RAF and, if so, con-
structing it. One simply computes the maxRAF of the set of
those reactions r that are essential for any RAF to exist.3

The proof of the theorem 4.1 is provided in the electronic
supplementary material.

Theorem 4.1. Let Q ¼ (X, R, C, F) be a CRS with a RAF, and let

R� ¼ {r [ wRAF(R) :wRAF(R n {r}) ¼ ;}:
Then Q has a core RAF if and only if R− is a RAF for Q, in which
case, R− is the core RAF for Q. In particular, determining whether
or not Q has a core RAF, and if so finding it, can be performed in
polynomial time in the size of Q.

Applying theorem 4.1 to the archaea dataset described
earlier (figure 2), reveals that no core RAF is present.

4.2. Detecting spontaneous reactions in RAFs
A fundamental observation is that a reaction cannot proceed
until all its reactants are available, whereas if a catalyst for the
reaction is absent, the reaction may still proceed, albeit slowly,
and later speed up when a catalyst becomes available. We for-
malize this as follows. Consider any CRS Q ¼ (X, R, C, F).
Let R0 be a RAF for Q (e.g. the maxRAF, or some sub-RAF).
An admissible ordering for R0 is a linear ordering o of the



r2

r1

r6

r3

r7

r4 r5

S2

S4

S4

S3S2

S1

S3

S1

(R' ) [   (R')]

Figure 4. Left: The graph G(R0) for the seven-reaction RAF R0 of the exper-
imental system from §1.4, with its four strongly connected components
shaded. Right: The associated condensation digraph x[G(R0)].

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

17

9
reactions of R0, o = (r1, r2,…, rk), for which (i) all the reactants of
r1 are present in the food set, and (ii) for each i≥ 2, each reactant
of ri is either present in the food set or is produced as the pro-
duct of at least one earlier reaction. In other words, if we let
Ri = {r1, …, ri}, for 1≤ i≤ k, then r(ri) # clRi�1 (F) for i = 1, …, k
where clR0 (F) ¼ F and where, for j > 1, clRj (F) is the union of
the set clRj�1 (F) and the set of products of reaction rj that have
all their reactants in clRj�1 (F). A basic result concerning admissi-
ble orderings is the following result (from lemma 3.1 of [17]).

Proposition 4.2. For any CRS Q ¼ (X, R, C, F), a subset R0 of R
has an admissible ordering if and only if R0 is F-generated.
In particular, every RAF has an admissible ordering.

Given an admissible ordering o = (r1, r2, …, rk) for R0, we
say that ri starts uncatalysed in o if none of the catalysts
for reaction ri is present in cl{r1,...,ri�1}(F); otherwise, we say
that ri starts catalysed. For example, consider the following
two systems with food set F = {a, b, c}, both of which are
themselves RAFs.
:20200
system 1
 system 2
 48
8
r : aþ b [x] �! y
 r : aþ b [x] �! x
r0 : aþ c [y] �! x
 r0 : aþ c [x] �! y
Both systems admit the two possible admissible
orderings (r, r0) and (r0, r). For system 1, r starts uncatalysed
for the ordering (r, r0) but not for (r0, r); for system 2, r
starts uncatalysed under both orderings.

Given an arbitrary CRS Q, a RAF R0 for Q and variable
integer k, a natural question asks whether R0 has an admissi-
ble ordering in which the number of reactions that start
uncatalysed is at most k. This problem is called k–CAF RAF
(since k = 0 is the condition for R0 to form a CAF) and this
problem was shown to be NP-complete in [34].

We now describe a polynomial-time algorithm to solve
the k–CAF RAF problem when it is restricted to RAFs that
have the property that each reaction has all its reactants in
the food set (the so-called elementary setting of [15]). To
describe this, we need to introduce some further notation.
Given a CRS Q and a RAF R0 for Q that has all its reactants
present in the food set, let (R0, A) be the directed graph on
vertex set R0 where there is an arc from r to r0 if r≠ r0

and at least one product of r catalyses r0. Let R0F be the
set of reactions in R0 that have an element of the food set
as a catalyst. Remove from R0 all reactions that are reachable
by a directed path from a vertex in R0F and let G(R0) be the
resulting digraph, and x[G(R0)] its associated condensation
digraph (whose elements are the strongly connected com-
ponents of G(R0) ). Note that x[G(R0)] is acyclic, and can be
computed in polynomial time in the size of Q. The proof
of the following proposition is given in the electronic
supplementary material.

Proposition 4.3. Let Q be a CRS, and R0 is RAF for Q
in which every reaction has all its reactants in the food set.
The smallest value of k for which R0 is a k-CAT RAF is equal to
the number of vertices of x[G(R0)] of in-degree equal to 0. Moreover,
it is necessary and sufficient that (any) one reaction in each such
strongly connected component of x[(G(R0)] starts uncatalysed.

Application. For the seven-reaction RAF of the experimental
system discussed earlier in §1.4 (figure 3), there is no reaction
that is catalysed by the (single) element of the food set,
and the associated graph G(R0) described above consists of
four strongly connected components (S1− S4), as shown in
figure 4. The associated condensation digraph x[G(R0)]
has just a single vertex of in-degree 0 (namely S1) and so, by
proposition 4.3, exactly one reaction (but no more) needs to
be spontaneous in forming the original RAF. Since Si consists
of a single reaction, this means that r1 must start uncatalysed.

For the remainder of this section, we consider the follow-
ing simpler variation on k–CAF RAF.

— Given a RAF R0 for Q and a reaction r∈R0, does every
possible admissible ordering for R0 require r to start
uncatalysed?

It turns out there is a fast (polynomial-time) algorithm to
solve this problem, which we now describe. We first intro-
duce a further definition and some further notation. Given
a CRS Q ¼ (X, R, C, F), a RAF R0 for Q and r∈R0, we say
that r is spontaneous in R0 if r starts uncatalysed for every
admissible ordering for R0.

Given the pair (R0, r), where R0 is a RAF for Q and r∈R0,
let C(r, R0) be the set of catalysts of r that are present in clR0(F ).
For x∈C(r, R0), let r[x] be the reaction obtained from r by
adding x as an additional reactant to r, without altering the
products or catalysts of r. For example, the reaction
r : aþ b [x, y] �! zþ w has C(r) = {x, y}, and r[x] is the reac-
tion: r[x] : aþ bþ x [x, y] �! zþ w: Finally, let R0[r, x] denote
the set of reactions obtained from R0 by replacing the reaction
r in R0 by r[x] (i.e. R0[r, x] :¼ (R n {r})< {r[x]}). The main result
of this section is the following (the proof is provided in the
electronic supplementary material).

Theorem 4.4. Let Q ¼ (X, R, C, F) be a CRS with that RAF.

(a) Given any RAF R0 for Q and reaction r∈R0, the following are
equivalent:

(i) r is spontaneous in R0;
(ii) R0[r, x] is not F-generated for any x∈C(r, R0);
(iii) The maxRAF of (X, R0[r, x], C, F ) is not equal to R0[r, x] for

any x∈C(r, R0).

(b) A reaction r is spontaneous in every RAF of Q containing r if
and only if r is spontaneous in the maxRAF of Q.

Theorem 4.4 provides an algorithm to identify the spon-
taneous reactions. First, compute the maxRAF for Q. Then
for each reaction r in this maxRAF, test if r has a catalyst in
the food set. If so, then r is not spontaneous. Otherwise, go
through the remaining catalysts of r that are a product of a
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reaction in maxRAF(Q) and for each such catalyst — say x —
compute the maxRAF of (X, maxRAF(Q)[r, x], C, F). If this
equals maxRAF(Q)[r, x] for any such x, then r is not
spontaneous. Otherwise, r is spontaneous.
ietypublishing.org/journal/rsif
J.R.Soc.Interface
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4.3. Application
We examined the archaea dataset described above with a
maxRAF of size 84 and a maxCAF of size 12. Since the
maxCAF is (considerably) smaller than the maxRAF, at least
one spontaneous reaction is required. Applying the above
algorithm, we find that a single reaction in this system is
spontaneous; moreover, this single spontaneous reaction
suffices to transform the maxCAF into the maxRAF. The reac-
tion concerned converts NAD into another important organic
catalyst, ATP. In cellular metabolism, this reaction is carried
reversibly by the enzyme nicotinamide mononucleotide ade-
nylyltransferase.4 This is significant, as it points to a possible
route for large catalytic expansion at the origins of metabolism
and deserves further experimental investigation.
200488
4.4. The impact of inhibition on RAF formation
So far, a CRS allows molecule types to catalyse a reaction.
However, molecule types can also inhibit reactions. As with
catalysis, inhibition can be regarded as a subset I of X ×R,
where (x, r)∈ I indicates that molecule type x inhibits reaction
r. Thus we describe an CRS with inhibition using a five-tuple
(X, R, C, I, F ). Following [21], given an arbitrary CRS with
inhibition Q ¼ (X, R, C, I, F), an uninihibited RAF (uRAF) is
a RAF R0 for Q that also has the property that no reaction
in R0 is inhibited by any product of R0 or by any element of
the food set. Note that if an uRAF exists, then there may be
more than one maximal uRAF (in contrast to RAFs, where
the maxRAF is the unique maximal RAF).

Although a polynomial-time maxRAF algorithm exists for
determining whether or not a CRS has a RAF, the task of
determining whether or not an arbitrary CRS with inhibition
has an uRAF is NP-hard [21]. More recently, it has been
shown [30] that the NP-hardness of determining the existence
of uRAF also holds even when every reaction in R has all its
reactants in the food set (i.e. the ‘elementary’ CRS setting
[15]). Nevertheless, the following procedure provides a way
to search for an uRAF: let R0 be the set of reactions in the
maxRAF of Q that are inhibited by either a product of the
maxRAF or an element of the food set. Then compute the
maxRAF of the resulting CRS obtained from Q by replacing
R by R0. If this second maxRAF exists, it is a uRAF (such
an approach was used to find uRAFs in [35]). In addition,
when the number of inhibiting molecule types is bounded,
there is a polynomial-time algorithm for determining
whether or not uRAFs exist.

However, it seems natural to require that any uRAF R0

should also be closed, since if somemolecule x can be generated
froma reaction r (notpart of the uRAF) and the reactants and cat-
alyst (but no inhibitor) of r is present inF< p(R0) thenwe should
expect x to be generated and this molecule x might then inhibit
some reactionwithinR0 (therebydestroying it).Wenowdescribe
a simple example to illustrate this, and discuss its consequences.
Consider the following system of four reactions:

r1 : aþ b[x] �! x; r01 : a
0 þ b0[x0] �! x0
and

r2 : cþ x[b] �! z; r02 : c
0 þ x0[b0] �! z0,

where F= {a, b, c, a0, b0, c0}. Suppose that z inhibits r01 and z0 inhi-
bits r1. In that case, the set {r1, r2, r01, r02} contains precisely two
closed uRAFs (namely {r1, r2} and {r01, r02}) however, their
union fails to be a uRAF. Also, {r1, r10} is a uRAF but its closure
{r1, r2, r01, r02} fails to be a uRAF. This simple example highlights
some key differences in the structure of uRAFs versus RAFs
(where the union or closures of RAFs remain RAFs).

With the focus on closed uRAFs, there is a possible way to
search heuristically for closed uRAFs by using irrRAFs. As
mentioned earlier, irrRAFs can be sampled in polynomial
time, and for each sampled irrRAF one can further compute
its closure and test for inhibition in polynomial time. In this
way, a closed irrRAF can be discovered, provided that the
number of irrRAFs is not too large. The justification of the
approach is based on the following result, established in the
electronic supplementary material.

Proposition 4.5. ACRS Q has a closed uRAF if and only if Q has
an irrRAF R0 for which no reaction in R0 (the closure of R0) is
inhibited by any element of F< p(R0).

5. Concluding comments
In this paper, we have derived and described a number of
new results concerning the structure of RAF sets and outlined
methods for identifying these structures and other character-
istics present in metabolic networks of interest in early
biochemistry. Our emphasis is on describing properties and
algorithms that can be efficiently implemented (i.e. they
have polynomial rather than exponential running time) so
that they can be applied to large databases, as well as tech-
niques to visualize and simplify complex networks (such as
the notion of quotient RAFs). Most techniques described
have been implemented in open-source public software
[14]. In future work, we plan to investigate the detailed struc-
ture of primitive archaea metabolic networks further, and
explore the impact of inhibition on RAF formation, including
variations on the strong form of inhibition described above,
by allowing inhibitors to only partially nullify catalysis.
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funding under the Catalyst Leader programme (agreement no. ILF-
UOC1901). J.C.X. is funded by a grant from the European Research
Council (666053) to William F. Martin.

Acknowledgements. We thank the three reviewers for providing a
number of helpful comments on an earlier version of this manuscript.
We particularly thank reviewer 3 for a helpful suggestion concerning
the relevance of pRAFs.
Endnotes
1Theorem 1(b) of [17].
2This terminology comes from topology.
3These are the reactions with an ‘importance’ index of 1.0, in CatlyNet.
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