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SYMMETRIC MATRICES REPRESENTABLE BY WEIGHTED
TREES OVER A CANCELLATIVE ABELIAN MONOID *

HANS-JURGEN BANDELT! anp MICHAEL ANTHONY STEEL}

Abstract. The classical result that characterizes metrics induced by paths in a labeled tree
having positive real edge weights is generalized to allow the edge weights to take values in any
cancellative abelian monoid satisfying the additional requirement that z +z =y +y implies z = y.
This includes the case of arbitrary real-valued edge weights, which applies to distance-hereditary
graphs, thus yielding (unique) weighted tree representations for the latter.
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Introduction. Given a tree, suppose that some of its vertices are labeled by sets
which form a partition of {1,...,n}, while its edges are weighted by some positive
real numbers. Then let d;; denote the sum of the weights of all the edges on the path
connecting the vertices with i and j in their label sets. This results in a syminetric,
n X n matrix d = [d;;], with zero diagonal, satisfying the 4-point condition,

dij + di < max{dix + dji, da + dj}

for all i,4,k,1 from {1,...,n}. The converse, that this condition guarantees tree re-
alizability, is also true (see, for example, Buneman [4]) and constitutes a well-known
result used widely in taxonomy; cf. [1], [3] for pertinent references.

Furthermore, the weighted-tree representation for d is necessarily unique—
provided that no redundant vertices are used, i.e., all vertices of degree less than
3 must be labeled. This mere uniqueness result of the representation also holds when
arbitrary nonzero real weights are attached to the edges. This has recently been
established by Hendy [6] using a novel technique based on Hadamard matrix trans-
formations that also allows the recovery of the weighted tree, though in exponential
time. Observe that a tree weighted with possibly negative reals still satisfies a relaxed
4-point condition, viz., at least two of the three distance sums are equal (and not
necessarily the two larger ones). Our main result below will show that this condition
characterizes tree realizability over R. Interestingly, the distance matrix d of a graph
G (unweighted, undirected) satisfies this relaxed 4-point condition exactly when G is
a distance-hereditary graph, see [2]. Thus, we get a canonical tree representation for
such graphs without extra effort.

The proof of the main theorem is inductive and can easily be adapted to con-
struct the unique tree realization for d in polynomial time. Furthermore, our proof
clarifies the respective roles played by the inequality and equality aspects of the clas-
sical 4-point condition (described above) in generating a tree representation—namely,
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previous proofs have exploited the inequality part in the construction of the tree; in
fact, the equality part alone guarantees the existence and uniqueness of a tree repre-
sentation with real edge weights, whereas the inequality part merely constrains the
resulting edge weights to be positive. Also, in the classical situation, our proof can be
further simplified, because in that case a certain complication cannot arise.

In order to cover both the classical case of tree metrics as well as the preceding
one, we let the edge weights come from any submonoid of an abelian group without
elements of order 2. Specifically, let A be an abelian monoid satisfying the following
two conditions: for ¢, 8,£,( € A,

a+&=a+( implies £ =( (cancellation),
a+a=p+0 impliesa =3 (uniqueness of halves).

For a + a we also write 2a, and in case o + 8 = 0 is solvable, we write 8 = —a.
Canonical choices for A are A = R,A = R+,A = 1Z, or A = 3N, under addition.
The latter two choices are relevant when graphs are studied. One could, of course,
also let A = Z., (integers modulo ), where m > 3 is odd.

For a tree whose vertices are labeled as before and whose edges are weighted
from A, the induced matrix d has the property that any four numbers, not necessarily
distinct, chosen from 1,...,n can be ordered as, say, ¢,j, k., so that

dij +dp1 + 2§ = dix +dji = du + dij for some £ € A.

We call this property the 4-point condition with respect to the monoid A. In case
A = R+ U {0} (the nonnegative reals under addition), the 4-point condition with
respect to A is nothing but the classical 4-point condition, which says that two of the
three distance sums are equal and at least as large as the third. In case we choose
A = R, the condition simply requires that two of the distance sums are equal.

As in the classical case, we wish to realize a matrix over A satisfying the 4-
point condition by a unique edge-weighted, labeled tree. We then require that A is
cancellative and that half-elements are unique, and, in order to guarantee uniqueness,
we must also insist that the tree has no unlabeled vertices of degree less than 3 and
no zero edge weights.

THEOREM 1. Let d be a symmetric, zero-diagonal, n x n matriz with entries
in a cancellative abelian monoid A that has uniqueness of halves. Then d satisfies
the 4-point condition with respect to A if and only if there ezists a tree T that has
no unlabeled vertices of degree less than 3 and that possesses a unique weighting of its
edges by nonzero elements of A that realizes d. In this case, such a tree T is necessarily
unique.

Notice that both the cancellation and uniqueness of halves properties are essential
hypotheses in Theorem 1. For instance, suppose that o +§ = a + ¢ holds in A for
some £ # (. Then the two trees with three edges weighted o, a, £ and o, o, , respec-
tively, yield the same matrix (of size 3). Similarly if 2a = 28 but o # B, then those two
trees, now having edge weights o, @, 8 and 3, 8, , respectively, give a common matrix.
Even if we are willing to allow nonuniqueness of tree representations, the cancellation
property alone is not sufficient to guarantee the existence of a tree representation for
a matrix d satisfying the 4-point condition. The following proposition characterizes
the extra condition required to guarantee the existence of tree realizations. For the
sake of simplicity, we confine ourselves to abelian groups.
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PROPOSITION 1. Let A be an abelian group.

(1) A is Boolean (i.e., every nonzero element has order 2) if and only if every
symmetric, zero-diagonal matriz d over A that satisfies the 4-point condition with
respect to A can be realized on every tree for which dij = 0 whenever 4,j are in the

same label set.
(2) A has no elements of order 4 if and only if every such matriz d has o realization

on at least one tree, with its edges weighted by elements of A.

Note that in any tree realizations we consider (such as in the proofs), there is no
loss of generality in assuming that all label sets are singletons, since we can restrict
the domain of d to ensure this, and extend the resulting tree realization to one for d.
Furthermore, with A as in Theorem 1, the extension is unique by the 4-point condition

with respect to A.
Proof of Theorem 1. The “if” direction is clear. For the converse direction, we

proceed by induction on the size of the matrix d, that is, the number of labels n. In
the tree representations that follow, it is implicit that if an edge weight (described by
some condition) is zero, then one collapses this edge, and the (possibly empty) sets of
labels on the two ends of the edge are combined. For brevity, we sometimes speak of
“yertex " whenever that vertex is labeled by i.

For n = 2, there is nothing to show; if di2 # 0, one must simply assign the weight
dio to an edge whose ends are labeled 1 and 2.

For n = 3, consider the bush (i.e., a tree with no interior edges) having three
leaves, labeled 1, 2, 3, each adjacent to a fourth, central vertex. Assign weights
a, 3,7 € A to the edges of this tree incident with 1, 2, 3, respectively. Then

dos + 20 = d11 + d2s + 2a = d12 + di13

by virtue of the 4-point condition. Since A is cancellative and half-elements are unique
(whenever they exist), this equation has a unique solution for c. Similarly, we describe
8 and « uniquely. Then, for instance,

doa + 20 + 28 = d1p + d13 + 28 = 2d12 + d23,

from which we get 2(a+8) = 2a+28 = 2d12 (by cancellation) and hence a+ (3 = di2,
as desired. This settles the case n = 3. .

As for n = 4, consider the generic binary tree consisting of four leaves, labeled
1,...,4, with their incident edges weighted a1,...,04, respectively, together with a
fifth edge, weighted ¢, which connects the path between 1 and 2 with that between
3 and 4. Thus for this tree, di3 + d2a = di4 + d3. We claim that the o; and £ are
uniquely defined. Indeed, applying the 4-point condition to 3-subsets, we obtain (cf.,
the case n = 3) :

di—1i41 +20i = di-1,i + diit1,
where indices are taken modulo 4. This defines o; uniquely. Moreover, the equation

diz + dzs + 26 = d13 + d2a
yields a unique § for this labeled tree. Now,

diz + dos + 201 + 20 = di3 +di2 + dis + 200 = 2d12 + d14 + da3,
from which we obtain a; + az = di2. Similarly, we obtain a3 + a4 = d34. In order to
recover the distance di4, we compute
di3 + doa + 201 + 26 + 204 = d12 +dia + diz + 204 + 2§
= dy2 + d3s + 2§ + 2d14
= di3 + dag + 2da4,
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yielding a1 + £ + @4 = di4. A similar result holds for di3,d23, d24. In case £ = 0, we
obtain a bush. Notice that, by the cancellation and uniqueness of halves properties,
as long as £ # 0, no other labeling of the tree is consistent with the given matrix d.
This proves the case n = 4.

Henceforth, let n > 5. Assume that every submatrix of d of size n—1 has a unique
tree realization of the type claimed. Suppose first that for all distinct , j, k, [, all three
distance sums are equal. Then the lengths o; and f; of the edges incident with leaf 4
in the bushes connecting the triples 2, 7, k and ¢, j, [, respectively, satisfy

dik +20; =dij +diy and dij +dy=d;; + 26;.

Applying the hypothesized equality of distance sums and the properties of A to the
sum of the preceding equations, we infer a; = f;. This argument shows that the
subbushes for all triples fit together consistently into a bush, and uniqueness of the
weighted-tree representation follows as well.

So, assume that there exist two distinct sums; without loss of generality,

dis +doz = dy2 +d3zq but diz+d2g # di2 + daa.

Now consider the unique tree representations T4, 7%, and 7},2 of d restricted to {2, 3,

..,n}{1,3,4,...,n}, and {3,4,...,n}, respectively. Then T3, is obtained from ei-
ther tree T} or T: by deleting the labels 2 and 1, respectively, and “cleaning up” the
resulting label-deleted trees. For example if < € {1,2} labels a vertex v of degree at
least three, we simply unlabel v. Otherwise, we delete v, and if v had degree one, we
delete its incident edge, and if the other end of this edge v’ has degree 2, we delete
v’. In this last case or if v had degree 2, we then identify the two edges e; and ez
incident with v’, respectively, v, to give a new edge e. This edge is weighted by the
sum of the weights of e; and ez, unless this sum is zero, in which case e is contracted.
Note that this contraction cannot occur in the classical situation. In order to recover
T) or T from Ti2 we mark the edge or vertex of T1 2 where the vertex labeled 1
or 2, respectively, is attached by a branch. A parent tree T for 71 and T is then
obtained from T}2 by reversing both of the processes that transformed 77 and 1> into
T12. However, we must show that this process and the corresponding edge weighting
are well defined and unique when both marks (points of attachment of the 1-branch
and the 2-branch) are either

(i) distinct but located in the interior of one and the same edge of T2, or
(ii) coincident and located on a vertex.

In case (i), denote the end vertices of this edge by a and b. The vertices 3 and 4 belong
to different components of T} 2 minus the edge connecting a and b. Otherwise, say, if
a is on paths from 3 and 4 to % in T; for ¢ = 1,2, then either distance sum di3 + d24 or
d14 + da3 would equal the sum of the edge welghts along the paths from a to 3 and a
to4in 71,2, a to 2 in T}, and a to 1 in T5. This, however, conflicts with the hypothesis
on the quartet 1, 2, 3, 4. Thus we may, without loss of generality, assume that either
a is 3 or a lies between 3 and 1. In either case, subdivide the edge between a and
b by two vertices ¢; and c2, with ¢; being between a and c2, so that c; becomes the
point of attachment of the i-branch (¢ = 1,2). We must distinguish the four possible
subcases:

(a#3,b#4), (a=3,b#4), (a#3,b=4), and (a=3,b=4).
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FIG. 1. The first two subcases of case (i) in the proof of Theorem 1.

For instance, the first two subcases are depicted in Fig. 1 (2) and (b), respectively.
We will consider in detail only these two subcases—the treatment of the other two is
similar.

Let ¢ be the unique element of A with

*) di3 + d2a + 2¢ = dy4 + das.

" Furthermore, there exist vertices labeled by j (=3 in subcase (b), and different from
3 in subcase (a)) and k # 4 such that the paths from j to 3 and k to 4 hit the edge
between o and b only in a and b, respectively, and such that the following equalities
hold:

(+) dia + d3j+ 26 =diz+dy; (i= 1,2)
and

(++) dis +dae +2¢ = dia +dze (1=1,2).
Now, adding up (*) and (+) for ¢ = 1 yields v
dog + d3j + 2(€1 + €) = da3 + dyj.
Compared to equality (+) for ¢ = 2, this implies
&1+e=6

by the properties of the monoid A. Similarly, (++) for ¢ = 1 compares to the sum of
(*) and (++) for i = 2, thus yielding

(+e=4(r.

Therefore, s
bhte+t@=bLb+0=6+C

is the weight of the edge between a and b (in Ti.2).
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FiG. 2. Case (ii) giving rise to compatible splits.

(a) (b)

FiG. 3. Case (ii) giving rise to incompatible splits.

In case (ii) a problem may arise (though only in the nonclassical situation). Either
expanded edge defines a split (i.e., a partition with two blocks) of {1,...,n}. If the
splits are compatible—that is, one is {I,J U K} and the other is {I U J, K}—then
we can still merge T1 and 7> uniquely into a single tree by the tree shown in Fig. 2,
with the necessary +¢,+¢ € A. However, the question remains of how to proceed if
the splits were not compatible, that is, if for some 7,3, k,! in {3,4,...,n},T1 and T
contained respectively the subtrees in Fig. 3 (a) and (b).

We claim that this situation cannot arise because it is in conflict with the rela-
tion between the distance sums for the quartets {1,2,1,j},{1,2,k,(},{1,2,4,!}, and
{1,2,7,k}. The three distance sums for each of these quartets are, respectively,

dis+a+B, a+C+B+E+eit+e, B-CH+oat+ltea+er,
diz+v+6, y+C+b6—E+e1+e, 6—(+r—E+ertey,
diz + o+, a+(+6—-E+ete, b—C+a+f+ertey,
diz+B8+7, B-(+yv-E+ea+e, v+(+B+E+eten.

Equality of the last two sums in row 1 or row 2 would give 2¢ = 0—that is, { = 0—
contrary to the hypothesis. Therefore, using cancellation, we infer that di2 = n+e1+
€2, With

ne{E+¢E-Gn{=§+¢-¢- ¢}

Since £ = 0 or ¢ = 0 is impossible, we obtain either { = ¢ or £ = —(, whence
.d12 = €1 + &2 in either case, and thus any equality in row 3 gives { = (. From the
fourth row, we deduce, however, that ¢ = —¢. This final contradiction completes the
argument.

We conclude that T} and T» can indeed be combined to a unique tree T, in which
all distances except possibly di2 are correctly represented. As for di2, recall that
d1a + do3 = d12 + d3a. Since d14, d23, and dz4 have the correct values on T, so does d;2
(by applying cancellation).

This completes the induction step and thus the proof.

Proof of Proposition 1. We may assume, without loss of generality, that the trees
in question have all their leaves labeled. First we verify assertion (1). Suppose ¢ is an
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element of A such that 2¢ 3 0. Then let n = 4 and consider the matrix d for which

“dij = 0if i+ j is even and di; = ¢ otherwise. This matrix has no realization on the

tree with four leaves, for which the path joining leaves 1 and 2 is disjoint from the
path joining leaves 3 and 4; cf. the case n = 4 in the proof of Theorem 1.

Conversely, assume that A is Boolean. Consider the bush S with leaves labeled
1,...,n. Given any fixed k, assign weight dix to the edge incident with leaf i (i =
1,...,n). Since 2¢ = O for all € € A, we infer the equality di; = dix + djx from
the 4-point condition, so d is realized by S with this weighting. Now every tree T
that contains vertices labeled 1,...,7n can be obtained from a subdivision To of S by

'successively applying the following “edge swap” operation: given the tree T}, so far

constructed, realizing d, assume that some vertex z of T is connected to two vertices
y and z by edges weighted o and 3, respectively. Then remove the edge between z and
z and create a new edge of weight a + [ connecting y and z instead. The resulting
tree Try1 induces d as well. Eventually, we arrive at a subdivision Ty, of T. Finally,
contract all edges incident with unlabeled vertices of degree 2, which are not in T, and
thereby add up the weights; this yields T.

As to (2), suppose A is an abelian group that contains an element ¢ of order 4.
Define a 5 x 5 matrix d with entries in A by setting di; = 2¢ precisely if {i,j} =
{2,4},{2,3}, or {1,4} and setting d;; = O otherwise. Then d satisfies the 4-point
condition with respect to A. However, d has no tree representation with an edge
weighting from A. This can be seen by restricting d to the sets {1,2,3,4},{1,3,4,5},
and {1,2,3,5}. Specifically, for {1,2,3,4},

di3 + dog # di1a + doz = d12 + d34,

and so, for any tree representation of d restricted to {1,2,3,4}, the path joining the
vertices labeled 1 and 3 must be disjoint from the path joining the vertices labeled 2
and 4. Similarly, by considering {1,3,4,5} and {1,2,3,5}, we require that the path
joining 3 and 5 is disjoint from the one joining 1 and 4 and that the path joining 1
and 5 is disjoint from the one joining 2 and 3, respectively. Clearly, however, these
three constraints cannot be realized on a single tree, as claimed.

Conversely, suppose A has no element of order 4. Let Ao denote the subgroup of
A generated by the entries in d, together with one solution for the subsets {4, j, k, 1}
of size at least 3 of the equation required of d by the 4-point condition for ¢,j,k, 1.
Since Ayg is finitely generated and has no element of order 4, the structure theorem for
finitely generated abelian groups implies that there is an isomorphism ¢: Ao — I'x A,
where I has no elements of order 2 and A is a Boolean group. Let dT' and d® denote
the projections of ¢(d) onto I' and A, respectively. Then dl' satisfies the 4-point
condition according to I', and so, applying the previous theorem, there is a tree T and
a weighting of its edges by nonzero elements of I' that realizes dr'. We now “expand”
T to allow for a tree representation for d2. Specifically, for each vertex v of T that is
assigned a set S of s > 1 labels, make v adjacent to s new leaves and assign each such
leaf a unique label from S, thereby obtaining a tree 7" having only singleton labels.
Extend the previous edge weighting by I' of T' to 7" by assigning weight 0 € " to the
new edges. Since d2 satisfies the 4-point condition with respect to A, part (1) shows
that there is a weighting of the edges of T” by elements of A that realizes d&. Now,
for each edge e of T" let

A(e) = ¢1(v(e), b(e)),

where y(e) € T and é(e) € A are the weights that were previously assigned to e by
considering d and d2, respectively. Then A(e) € Ao, and the weighting of the edges
of T" described by A\ realizes d. This completes the proof.
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Fic. 4. Configurations ezxcluded by the 4-point condition with respect to R.

Distance-hereditary graphs. Let G be an unweighted, 'undirected, connected
graph with vertices numbered 1 through n. The shortest-path metric d of G (which
- counts the edges in the shortest path connecting pairs of vertices in G) then takes
values among 0, 1,...,n — 1. There are several options for the abelian monoid A with
respect to which the 4-point condition can be considered. If we take A = N, then
d satisfies this condition if and only if G is an unweighted tree. For A = 1N the
corresponding 4-point condition characterizes block graphs (graphs in which every
maximal 2-connected subgraph (block) is complete); see Howorka [7]. The case A = 1Z
is more interesting, since it leads to a metric description of distance-hereditary graphs;
see Bandelt and Mulder [2]. G is said to be distance-hereditary if every induced path
(or subgraph) is isometric, that is, constitutes a subspace with respect to the metric
d. Actually, we may compute distance modulo 2k + 1 for any k > 1 and arrive at the
same class of graphs.

PROPOSITION 2. A graph is distance-hereditary if and only if its shortest-path
metric d satisfies the 4-point condition with respect to an abelian monoid A, where A
may be chosen as A = }Z (or R) or Zy, for m > 3 odd. Furthermore, G is bipartite
and distance-hereditary if and only if its metric d satisfies the 4-point condition with
respect to A = Z.

In view of Theorem 1, we can thus uniquely code a distance-hereditary graph
G by a weighted tree over %Z, where the vertices of the tree with degree smaller
than three are labeled by the vertices of G. An immediate consequence of this is
the following result (known to several people by now): the isomorphism problem
for distance-hereditary graphs is easy. Indeed, two distance-hereditary graphs are
isomorphic if and only if their associated weighted trees are isomorphic. For general

graphs, by contrast, determining the complexity of the isomorphism question is a

difficult and still unsolved problem [5]. Furthermore, the automorphism group of a
distance-hereditary graph is isomorphic to that of a tree.

Proof of Proposition 2. According to [2, Thm. 2], G is distance-hereditary if and
only if d satisfies the 4-point condition with respect to R, so we only have to adjust for
the expression of the distances modulo m. Assume that G is not distance-hereditary.
Then there exists an isometric subgraph of the form shown in Fig. 4 possessing a cycle
of length 2k + 3 or 2k + 4 (k > 1) with two (or one) possible chords as indicated
by the dotted lines. The four shaded vertices in either cycle yield distance sums
k+1,k+2k+3and k+ 1,k + 3,k + 5, respectively. In either case these are all
different provided m is not 2 or 4.

Evidently, G is bipartite if and only if each distance sum

dij + djr + dis

/.i
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is even. This is precisely the case when d satisfies the instances, for which #{1,7,k,l} =
3, of the 4-point condition with respect to A = Z. Thence the result.
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