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a b s t r a c t

Statistically consistent estimation of phylogenetic trees or gene trees is possible if pairwise sequence dis-
similarities can be converted to a set of distances that are proportional to the true evolutionary distances.
Susko et al. (2004) reported some strikingly broad results about the forms of inconsistency in tree estima-
tion that can arise if corrected distances are not proportional to the true distances. They showed that if the
corrected distance is a concave function of the true distance, then inconsistency due to long branch attrac-
tion will occur. If these functions are convex, then two ‘‘long branch repulsion’’ trees will be preferred over
the true tree – though these two incorrect trees are expected to be tied as the preferred true. Here we
extend their results, and demonstrate the existence of a tree shape (which we refer to as a ‘‘twisted
Farris-zone’’ tree) for which a single incorrect tree topology will be guaranteed to be preferred if the cor-
rected distance function is convex. We also report that the standard practice of treating gaps in sequence
alignments as missing data is sufficient to produce non-linear corrected distance functions if the substi-
tution process is not independent of the insertion/deletion process. Taken together, these results imply
inconsistent tree inference under mild conditions. For example, if some positions in a sequence are con-
strained to be free of substitutions and insertion/deletion events while the remaining sites evolve with
independent substitutions and insertion/deletion events, then the distances obtained by treating gaps
as missing data can support an incorrect tree topology even given an unlimited amount of data.

! 2015 Elsevier Inc. All rights reserved.

1. Introduction

Distance-based methods are fast and statistically consistent
estimators of tree topology if the input distances converge (with
increasing data) to values that are proportional to the evolutionary
distance between tips. An evolutionary distance is the number of
substitution events that have occurred along the path separating
two tips. Typically a distance correction procedure is applied to
the observed sequence differences to obtain a more accurate esti-
mate of the evolutionary distance between pairs of sequences.
However, in many cases it is not possible to correctly account for
the evolutionary processes which generated the data. In other
words, it is not always possible to accurately estimate the evolu-
tionary distance for pairwise measurements of dissimilarity.

In a pioneering paper, Susko et al. (2004) showed how model
misspecification can lead to transformed evolutionary distances
that are non-linear with respect to evolutionary distance (i.e. con-
cave or convex), and for which there are regions of tree space for
which neighbor joining will be inconsistent. We extend this result
further (Theorem 1 in Appendix A) by showing how virtually all
misspecified correction functions lead to (strong) inconsistency
(an incorrect tree will be unambiguously favored by
neighbor-joining). A main focus of this paper involves a particular
study of model misspecification in distance corrections that treats
gaps as missing data.

2. Model

For variants of the simplest model of sequence evolution (Jukes
and Cantor, 1969), all nucleotides are equally exchangeable and
the simple proportion of sites that differ, the p-distance, is a suffi-
cient statistic for estimating an evolutionary distance. Under such a
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model, Mg , the expected p-distance between a pair of taxa is a
function of the evolutionary distance (path length in the tree) t
between the taxa, that is, we have Eg ½p" ¼ gðtÞ, where the function
g is a monotonically (strictly) increasing function of t which is ana-
lytic (i.e. has a power series expansion, and so derivatives exist of
all orders) and satisfies gð0Þ ¼ 0. For example, for the Jukes–Cantor

model we have gðtÞ ¼ 3
4 1& e&4

3t
! "

. If the distances are corrected

under a (possibly different), fully exchangeable model, Mf , then
the estimated evolutionary distance t̂ is usually computed from
the p-distance by using the ‘plug-in’ formula t̂ ¼ f&1ðpÞ.

Thus, for any generating model for which p converges in prob-
ability towards its expected value Eg ½p" ¼ gðtÞ (e.g. i.i.d. site substi-
tution models) the estimated evolutionary distance t̂ will converge
towards t ¼ hðtÞ, where hðtÞ ¼ f&1ðgðtÞÞ. Note here that both p and t̂
are random variables, while t is simply a function of t. Notice that
this ‘transformed’ evolutionary distance t is not exactly the
expected value of t̂, even when f ¼ g (Tajima, 1993), since the
expectation of a non-linear function of random variable is not gen-
erally equal to the function evaluated at the expected value of that
variable. Nevertheless, for any i.i.d. site substitution model, the dif-
ference between t and the expected value of t̂ decays towards zero
as the sequence length grows.

Notice also that when f ¼ g (i.e. the correction model matches
the generating model) then t ¼ t. However, in general, t need not
be equal to t, except when t ¼ 0. For example, if the generating
model is the Jukes–Cantor model with some form of among-site
rate heterogeneity and the correcting model that does not assume
the same form of rate heterogeneity then t can depend on t in a
quite non-linear way (Soubrier et al., 2012).

In this paper we are interested in determining when the trans-
formed evolutionary distances t will favor a different tree to the
tree generating the data. In particular, we explore an example of
how ignoring the process of insertion and deletion (referred to
jointly as indels hereafter) can lead to statistical inconsistency in
an otherwise correctly modeled substitution process.
Inconsistency occurs in this case even when the alignment of resi-
dues is correct.

Susko et al. (2004) studied general properties of t as a function
of t. If this function is linear (i.e. when the correction model
matches the generating model up to a constant factor) then
distance-based tree estimation will be statistically consistent. If
the function is concave, inference can be inconsistent and posi-
tively misleading due to long branch attraction. They also show
that if the function is convex, two long branch repulsion trees
are expected to be equally preferred over the correct tree. In
Appendix A we establish a more general result: outside of the spe-
cial case where the correcting generating model matches the gen-
erating model up to a constant factor, there will always exist tree
shapes for which neighbor-joining will estimate a single incorrect
tree from t. The tree shapes used to demonstrate this result are the
familiar Felsenstein-zone tree (Fig. 1A; Felsenstein, 1978) and a
tree that we refer to as the ‘‘twisted Farris-zone’’ tree (Fig. 1B).
‘‘Farris-zone’’ tree is used to refer to tree shapes that exhibit long
branch repulsion under certain conditions of model violation, and
this asymmetrical (‘‘twisted’’) variant has branch lengths which
will result in a single incorrect tree topology being preferred if
the corrected distance function is convex.

2.1. The gaps as missing data convention

It is common practice to treat a gap in a sequence as missing
data in phylogenetic estimation based on distances, parsimony
scores or likelihoods. In the context of a pairwise distance

calculation, this treatment means that positions with a gap in
either sequence are disregarded because they cannot be counted
as either a similarity or a difference. Omitting indels from distance
corrections obviously forfeits the opportunity for learning about
the evolutionary distance from insertions and deletion events.
However, one may hope that treating sites with gaps as missing
data would not perturb a distance estimate that relies solely on
substitution events. If the substitution and indel processes are
completely independent, and have the same stationary nucleotide
frequencies, this is the case.

Consider the case of sequences that are generated by: a
time-reversible stochastic process of insertions and deletion, and
a model of substitutions for which there is a statistically consistent
distance correction. If the alignment is known without error, then
the only effect of the indel process is to introduce a fraction of sites,
z, for which one sequence lacks a residue and the other sequence
has a residue. These are the gapped positions in a pairwise align-
ment. Note that the presence of gap in a column in the alignment
is not handled by deleting the column. The gap only affects pair-
wise comparisons involving a sequence which contains a gap. A full
description for z for a full alignment would require some additional
notation to indicate which sequences are being compared. Our
argument below applies to any pairwise distance, so we simply
use zðtÞ to describe the expected proportion of gapped position
in any pairwise distance for sequences separated by path length, t.

The fraction of gapped positions will be a function of the evolu-
tionary distance with: zð0Þ ¼ 0 because at no distance there are no
opportunities for indels, and zðtÞ < 1 for all t. The latter property
can be seen by treating one of the two sequences as if it were
the ancestral sequence. This is permissible because we have
assumed that the indel process is time reversible. The probability
of a residue surviving from the ancestral sequence to the descen-
dant sequence is described by an exponential function with rate
parameter controlled by the rate of deletions. This probability
remains > 0 for all values of the evolutionary distance, hence there
is a non-zero probability of an ungapped position, and zðtÞ cannot
equal 1.

In a typical consistency proof, we consider sequences of ever
increasing length. We note that indel models (e.g. the TKF91
model; Thorne et al. (1991)) imply a equilibrium sequence length.
Here we discuss statistical consistency by considering what hap-
pens as the number of loci increases without bound, but the equi-
librium length of each locus is determined by the parameters of the
indel model. Hence the total sequence length approaches infinity,
while it is still appropriate to describe the sequence as being gen-
erated by the indel process.

For the standard substitution models, we can consistently esti-
mate the distance if the indel process has insertion and deletion
rates of 0. In this case there are no gapped columns and zðtÞ ¼ 0.
In the more general case, if we only consider site patterns in which
no gaps occur, the probability of a site pattern s for branch length t

Fig. 1. (A) The Felsenstein-zone tree with branch lengths used in the proof of
Lemma 3; (B) The ‘‘twisted Farris-zone’’ tree used in the proof of Lemma 4.
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is PrðsjtÞ ¼ ð1& zðtÞÞPr0ðsjtÞ where Pr0ðsjtÞ is the usual site pattern
probability (when we have no missing data caused by gaps), and
ð1& zðtÞÞ is the probability of not containing a gap. The multiplica-
tion of the probability of not containing a gap by the probability of
the site pattern given the branch length is valid whenever the sub-
stitution and indel process are independent. We can see that calcu-
lating the probability of each ungapped site pattern by using the
fraction of ungapped sites that display the pattern will result in
Pr0ðsjtÞ because this will constitute dividing the probability of each
pattern by ð1& zðtÞÞ. Thus the spectrum of ungapped pattern fre-
quencies will converge to exactly the same frequencies of the pat-
terns when there are no indel events. If the insertion and deletion
process and the substitution process have different equilibrium
nucleotide frequencies, or if the probability of a deletion is affected
by the nucleotide base at a site, this consistency may not hold.

Thus, if the indel process and substitution process are indepen-
dent, treating gaps as missing data will not cause statistical incon-
sistency of distance-based tree inference. Note that this result does
not contradict the proof by Warnow (2012) that treating gaps as
missing data can lead to inconsistency in maximum likelihood.
Her proof focuses on the maximum likelihood criterion and is
restricted to the case in which internal branch lengths for the sub-
stitution process are equal to 0 (there are no substitution events).
Internal branch lengths of 0 lead to inconsistency without the com-
plication of an indel process. Our result applies to cases in which
the tree method is capable of consistently estimating the tree if
there are no indels.

2.2. Cases in which indel processes and substitution process are not
independent

If the occurrence of an indel affects the probability of a substi-
tution, then the previous argument does not hold. In fact, we can-
not use the argument above under any violation of the
independence assumption. For example, if some subset of sites is
constrained by evolution and thus free of both substitutions and
indels, then it is possible for the gaps-as-missing-data convention
to lead us to the wrong tree. In such cases, the gapped sites are a
biased sample with respect to the substitution process. See Roure
et al. (2013) for a discussion of other contexts in which
non-random patterns of missing data perturb phylogenetic estima-
tion. Specifically, if the distribution of missing sites is not indepen-
dent of the evolutionary rates at those sites this bias can lead to
problems in phylogenetic reconstruction (Grievink et al., 2013;
Roure et al., 2013).

2.3. Paired invariants model

Consider the case of sequences being generated under the
TKF91 (Thorne et al., 1991) indel model and the Jukes–Cantor
(JC) (Jukes and Cantor, 1969) substitution model, but with invari-
ant sites. In particular, let the ‘‘paired invariant sites’’ model refer
to the case in which some fraction of sites are free from both indels
and substitutions and the other parts of the sequence are described
by the TKF91 and JC models. In terms of the formalism of the TKF91
model, this would require that each invariant site which is fol-
lowed by a region that is free to vary is considered to have a
new ‘‘immortal link’’ to the right of the invariant site. We consider
the case in which alignment is known without error.

Let pinv denote the expected proportion sites in a sequence
which are invariant with respect to indels and substitutions. In
the TKF model single nucleotide insertions and deletions can
occur at any site in the alignment (Thorne et al., 1991). Under
the TKF model, at equilibrium the expected rate of insertions
per locus is equal to the expected rate of deletions per locus.

The TKF model is usually described with insertion rates per link
and deletion rates per link. In that parameterization the inser-
tion and deletion rates can differ. We call the deletion rate
scaled per nucleotide h.

When computing a pairwise distance, the gaps-as-missing-data
correction removes sites in which either sequence has a gap from
consideration. The expected length of a locus under the paired
invariants model will be denoted N. This will be a function of the
expected length of each block of variable sites, which is a function
of the insertion rate relative to the deletion rate. Our argument
applies to any insertion rate which leads to a non-infinite equilib-
rium sequence length. So we phrase the argument in terms of the
per-locus expected length and do not use the insertion rate param-
eter explicitly in our argument.

Under the TKF91 model, each block of variable sites is expected
to follow a geometric distribution with a parameter that depends
on the ratio of the per-link insertion and deletion rates. Because
sites with an insertion and then a deletion are typically culled from
an alignment, we consider a pairwise alignment length to be the
length of the correct alignment after all positions with gaps in both
members of the pair are removed. Even though the expected num-
ber of nucleotides in each sequence does not change, the insertion
of new positions and deletion of sites means that the pairwise
alignment length grows as a function of the evolutionary distance.
In the paired invariants model, let aðt; h; pinvÞ denote the expected
length of a pairwise alignment of two sequences separated by path
length, t. Then:

að0; h; pinvÞ ¼ N ð1Þ
lim
t!1

aðt; h;pinvÞ ¼ Nðpinv þ 2ð1& pinvÞÞ ð2Þ

where Npinv is the number of invariable columns in the alignment.
Nð1& pinvÞ columns are expected to be in the ancestor but deleted
along the path to the descendant. Because the process started at
equilibrium, we expect them to be replaced by Nð1& pinvÞ inserted
sites.

For each site that is free to vary in the ancestor, the probability
that it survives to the descendant is e&ht , using the exponential dis-
tribution. We refer to columns where there is a nucleotide in both
the ancestor and the descendant as ‘‘ungapped columns’’. The
expected number of ungapped columns is

bðt; h; pinvÞ ¼ N pinv þ ð1& pinvÞe&ht# $

Note that limt!1bðt; h; pinvÞ ¼ Npinv.
The expected proportion of residues in a sequence which are

free to vary remains constant at 1& pinv as branch length
approaches infinity. However, if we consider only ungapped col-
umns in the true alignment of two sequences, we see that the pro-
portion of these sites which are variable approaches 0 as deletions
continue to reduce the number of aligned columns among the class
of variable sites. The expected proportion of ungapped columns
that are free to vary is:

PrðvariablejungappedÞ ¼ Nð1& pinvÞe&ht

bðt; h;pinvÞ

¼ ð1& pinvÞe&ht

pinv þ ð1& pinvÞe&ht ð3Þ

This function is plotted in Fig. 2A for the case when pinv ¼ 0:2 and
h ¼ 0:1.

Recall that under the Jukes–Cantor model the probability of a
site having a different nucleotide from its ancestor across a path

of length t is 3
4 1& e&4

3t
! "

. For the Jukes–Cantor model with invari-

ant sites the probability of a difference, conditional on a site being
a member of the variable class is:
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Prðdifferencejungapped; variableÞ ¼ 3
4

1& e&
4t

3ð1&pinv Þ
! "

: ð4Þ

The only difference between this formula and the Jukes–Cantor
transition probability is the inclusion of a 1& pinv factor to increase
the rate of substitution for the variable sites. This is included to
adhere to the common convention that the mean rate of substitu-
tions is equal to 1.0 per site.

For a pair of sequences, the probability of seeing a different
state at a randomly chosen, ungapped, variable site (Eq. (4)) is a
monotonically increasing function of t. However, the proportion
of ungapped sites which are variable decreases, as was shown in
Eqn. (3). The expected pairwise distance for the paired invariants
model when measured as the expected proportion of ungapped
positions that differ between the tips is:

E½p" ¼ Prðdifferencejungapped; variableÞPrðvariablejungappedÞ

¼
3ð1& pinvÞe&ht 1& e&

4t
3ð1&pinv Þ

! "

4 pinv þ ð1& pinvÞe&htð Þ :

ð5Þ

This expected p-distance is shown in Fig. 2B. Note that it is not a
monotonically increasing function.

2.4. Gaps-as-missing distance correction

Under a gaps-as-missing analysis, only the ungapped columns
are relevant in distance calculations. Thus, the expected p-distance
shown in Eq. (5) fills the role of gðtÞ in the discussion of our proofs
about the consistency of distance-based tree estimation. Note that
the substitution model for the paired invariant sites model is sim-
ply the Jukes–Cantor substitution model with invariant sites. If we
assume that we know the (correct) proportion of invariant residues
in the generating process, then the distance correction for this
model is:

f&1ðpÞ ¼ &3ð1& pinvÞ
4

ln 1& 4p
3ð1& pinvÞ

% &
: ð6Þ

We can combine Eqs. (5) and (6) to express the transformed
evolutionary distances t as a function of the true evolutionary dis-
tance, t:

t ¼ &3ð1& pinvÞ
4

ln 1&
4
ð1&pinvÞe&ht 3

4&
3
4e

&4t
3ð1&pinv Þ

! "

pinvþð1&pinvÞe&ht

3ð1& pinvÞ

0

BBB@

1

CCCA

¼ &3ð1& pinvÞ
4

ln 1&
e&ht 1& e

&4t
3ð1&pinvÞ

! "

pinv þ ð1& pinvÞe&ht

0

@

1

A ð7Þ

This function is shown in Fig. 3.
Clearly the function is not linear; indeed it is not monotonically

increasing. In fact, the function is not linear even at small path

lengths. The first and second derivatives of the distance correction
with respect to t (see Appendix B) are somewhat complicated.
However, when evaluated at t ¼ 0, the first derivative is 1 and
the second derivative of the expected value of the distance correc-
tion is &2pinvh. Thus, the gaps-as-missing-data approach coupled
with the correct substitution model results in a concave distance
correction function whenever both pinv > 0 and h > 0. Lemma 3
of Appendix A states that this will lead to statistically inconsistent
estimation of the tree topology for some tree shapes.

The proof described above only applies to the four-tip tree used
in the construction of the argument, but there is no reason to be
confident that larger trees will not be susceptible to similar effects.
To demonstrate this, we performed a simulation of a six-taxon tree
that is constructed by replacing each tip at the end of a long branch
in a Felsenstein-zone tree with a pair of taxa. We simulated 100
datasets on this tree shape under a JC + TKF91 paired-invariants
model with an equilibrium sequence length of 100,000 and
pinv ¼ 0:5 (see Appendix C for simulation details). Estimation of
the trees under the weighted least-squares criterion using PAUP⁄

v4.0b10 (Swofford, 2001) with the JC distance correction and an
assumption that pinv ¼ 0:5 preferred the long-branch attraction
tree topology in all 100 simulation replicates.

We implemented a simple program which estimates the equi-
librium sequence length by taking an average of the (non-gap)
length of each sequence. The software then removes a number of
constant columns that is compatible with the assumption that
pinv ¼ 0:5 in the paired-invariants model. These culled matrices
serve as a reasonable proxy for the free-to-vary sites in the simu-
lation. Weighted least-squares tree inference was performed on
all of these culled data sets using the JC distance correction. The
correct tree was recovered in 86 out of the 100 cases. This demon-
strates that, in most cases, there was sufficient information to esti-
mate the true tree correctly if one analyzes the data in a manner
that is compatible with the paired invariants model.

We conjecture that this pipeline of

Fig. 2. Properties of the paired invariants model with pinv ¼ 0:2 and h ¼ 0:1. A. The proportion of aligned sites which are free to vary as a function of time (Eq. (3)) B. Pairwise
nucleotide substitution distance through time (Eq. (5)). Note 5-fold difference in t-axis scale between A and B.

Fig. 3. The transformed evolutionary distance t values as a function of true
evolutionary distance t, under the paired invariants model with pinv ¼ 0:2 and
h ¼ 0:1 (Eq. (7)).
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1. estimating the equilibrium sequence length using the average
sequence length, N̂e,

2. culling pinvN̂e constant, gapless characters (based on an
assumed value of pinv), and

3. applying a distance correction that uses the correct substitution
model and no invariant sites

would provide a statistically consistent estimate of an additive dis-
tance matrix that would lead to statistically consistent estimate of
the phylogeny. However, because this procedure requires knowl-
edge of the correct value of pinv, it does not represent a viable solu-
tion for real-world analyses.

3. Conclusions

We have extended the work of Susko et al. (2004) by proving
that there is a tree shape which will lead to the positively mislead-
ing estimation of an incorrect tree topology when the distance cor-
rection function is convex. We have also proven that the
commonly applied gaps-as-missing-data approach will not lead
to statistical inconsistency of distance estimates if the indel and
substitution processes are independent. However, sequence evolu-
tion follows the paired invariants model, the deviation from inde-
pendence is sufficient to lead to inconsistency of the distance
estimates and the tree topology.

Obviously, the paired invariants model with a Jukes–Cantor
substitution process is an extremely simple model which does
not accurately depict the evolution of real sequences.
Nevertheless, the paired invariants model encapsulates a simple
idea that has been at the core of thinking about molecular evolu-
tion ever since Kimura (1968): constant sites probably are con-
strained because they play an important functional role. It seems
entirely plausible that the subset of functionally important sites
in the genome would be prevented from experiencing fixation of
indels or substitutions. Thus it is troubling that adding this idea
to the simplest possible substitution model is sufficient to lead to
inconsistency of phylogenetic inference.

One solution would be to rely on distance corrections which do
not treat gaps as missing data. Another option may be using mul-
tiple values of pinv to correct for the fact that the proportion of
ungapped positions which correspond to constrained sites is likely
to be higher for comparisons over long evolutionary timespans.
Both the proportion of gapped sites in the correct pairwise
sequence alignment and the proportion of ungapped positions
which are variable (shown in Fig. 2A) are monotonically changing
functions of the path length. This implies that it may be possible to
devise some recipe for correcting distances that uses a pair-specific
value of pinv, and that this pair-specific pinv could be calculated
from an observable property of an alignment. Such a procedure
might rescue distance-based from inconsistency when the data
are generated by the paired invariants model. However, this form
of inference would probably be sensitive to slight inadequacies of
the model because accounting for rate heterogeneity when using
pairwise data alone is notoriously difficult. Our results underscore
that fact that phylogenetic inference is a problem that is so difficult
that even subtle forms of ascertainment bias can lead to funda-
mental misbehavior of inference methods.
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Appendix A

Suppose that distances are generated on a tree by a model Mg

and corrected assuming a model Mf .

Theorem 1. Suppose that f ðtÞ and gðtÞ (the functions for correcting
and generating p-distances respectively) are analytic functions of t
that are strictly increasing in some neighborhood of 0, and satisfy

f ð0Þ ¼ gð0Þ ¼ 0. Let hðtÞ ¼ t ¼ f&1ðgðtÞÞ (the transformed evolution-
ary distances). Then precisely one of the following conditions holds:

( The correction process f is equal to the generating function g up to a
scalar multiple (i.e. f ðtÞ ¼ gðt=cÞ and so hðtÞ ¼ ct for all t 2 ½0;qÞ,
for some constant c). In this case NJ will select the correct tree
topology when applied to the transformed evolutionary distances;
or
( The correction process f is not equal to the generating function g up

to a scalar multiple. In this case there exists a binary tree on four
leaves with an associated set of strictly positive branch lengths
for which NJ will select an incorrect tree topology when applied
to the transformed distances.

The proof of this result involves combining five lemmas; the
first is standard, the second is a formal statement of results from
Susko et al. (2004), the third is new, and the fourth and fifth are
technical lemmas.

Lemma 2 Saitou and Nei (1987, p. 413). NJ applied to distance data
on four taxa (A;B;C;D) returns the quartet tree ABjCD if
dAB þ dCD < minfdAC þ dBD; dAD þ dBCg.

Lemma 3. Suppose the transformed distance function hðtÞ is strictly
concave and increasing on the interval ½k;2k" for some k > 0. For
any r > 0 sufficiently small, distances on Felsenstein-Zone tree of
Fig. 1(A) that are transformed by h have the property that NJ will esti-
mate the incorrect tree topology (ADjBC).

Proof of Lemma 3. By Lemma 2, for any distance function d on
four taxa i; j; k; l, NJ applied to d will return the quartet tree ijjkl
when i; j minimizes the pairwise sum dij þ dkl. Let us now put
dij ¼ hðtijÞ ¼ tij (i.e. the transformed evolutionary distances).
Consider the three pairwise sums:

(S1) dAB þ dCD ¼ 2hðkþ rÞ;
(S2) dAC þ dBD ¼ 2hðkþ 2rÞ;
(S3) dAD þ dBC ¼ hð3rÞ þ hð2kþ rÞ;

Since h is strictly increasing on ½k;2k", the expression (S2) is
always greater than (S1) for any r > 0. Thus it suffices to show that
case (S3), which corresponds to NJ returning the tree ADjBC, is less
that (S1) for sufficiently small r > 0. To this end, note that since h
is strictly concave on ½k;2k" we have: hð2kÞ < 2hðkÞ, so if we let

qðxÞ :¼ 2hðkþ xÞ & hð2kþ xÞ & hð3xÞ

then qð0Þ ¼ 2hðkÞ & hð2kÞ & hð0Þ > 0 (recall hð0Þ ¼ 0). Since h is con-
tinuous (by virtue of being analytic) q is too, so it follows that for
any sufficiently small (but strictly positive) value of r we have
qðrÞ > 0. Because qðrÞ equals the quantity described by (S1) minus
that described by (S3), when qðrÞ > 0 then NJ will prefer tree ADjBC
over the true tree ABjCD. !

Lemma 4. Suppose the transformed distance function t ¼ hðtÞ is
strictly convex and increasing on the interval ½k;2k" for some k > 0.
For any r > 0 sufficiently small, distances on the ‘‘twisted
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Farris-zone’’ tree of Fig. 1(B) that are transformed by h have the prop-
erty that neighbor-joining will estimate the incorrect tree topology
(ADjBC).

Proof of Lemma 4. For the ‘‘twisted Farris-zone’’ tree of Fig. 1(B)
consider the three pairwise sums:

(S1) dAB þ dCD ¼ hð2kþ rÞ þ hð3rÞ;
(S2) dAC þ dBD ¼ hðkþ 4rÞ þ hðkþ 2rÞ;
(S3) dAD þ dBC ¼ 2hðkþ 3rÞ.

Now, if h is strictly convex on ½k;2k" and if x; y 2 ½k;2k" then:

h
xþ y

2

! "
<

1
2
½hðxÞ þ hðyÞ":

Applying this with x ¼ kþ 4r and y ¼ kþ 2r, where 0 < r < k=4,
gives:

hðkþ 3rÞ < 1
2
½hðkþ 4rÞ þ hðkþ 2rÞ";

which gives (S3)<(S2).
Again by convexity, hð2kÞ > 2hðkÞ, so if we let

qðxÞ :¼ hð2kþ rÞ þ hð3rÞ & 2hðkþ 3rÞ:

then qð0Þ ¼ hð2kÞ & 2hðkÞ þ hð0Þ > 0. By a similar continuity argu-
ment as in the concave case, qðrÞ > 0 for all r > 0 sufficient close
to 0. Because qðrÞ equals the quantity described by (S1) minus that
described by (S3), if we take r 2 ð0; k=4Þ to be small enough that
qðrÞ > 0 (i.e. (S3)<S(1)), and recall from above that for
0 < r < k=4 we also have (S3)<(S2), then this provides conditions
for which NJ will again prefer tree ADjBC over the true tree ABjCD. !

Lemma 5. Under the assumptions on f and g in Theorem 1, the
transformed distance function h is a strictly increasing analytic
function of t on ½0;qÞ for some q > 0.

Proof of Lemma 5. The proof that h is analytic is straightforward,
since analytic functions (in particular f and g) are closed under
composition, and also under functional inverse (providing their
derivative is non-zero, as it is here). To see that h is increasing, at
least close to 0, note that, by elementary differential calculus, we
have:

d
dt

hðtÞ ¼ g0ðtÞ
f 0ðf&1ðgðtÞÞÞ

: ð8Þ

By assumption, f and g are both increasing in some neighborhood of
0, and since f&1ðgð0ÞÞ ¼ f&1ð0Þ ¼ 0, there exists q > 0 for which the
numerator and denominator of Inequality (8) are both strictly pos-
itive for all t 2 ½0;qÞ. !

Lemma 6. Suppose HðtÞ is a real-valued function that is analytic in
½0;qÞ for some q > 0, and that satisfies Hð0Þ ¼ 0. If HðtÞ – ct on
½0;qÞ for some constant c, then there exists some value s > 0 so that
HðtÞ is either strictly concave on the interval ½s=2; s" or strictly convex
on the interval ½s=2; s".

Proof of Lemma 6. If H00ð0Þ > 0 then since H00 is continuous at 0,
there is a value s 2 ½0;qÞ so that H00ðtÞ > 0 for all t 2 ½0; s" and so
H is strictly convex on ½s=2; s". Similarly, if H00ð0Þ < 0 then H is
strictly concave on ½s=2; s" for some s > 0. Suppose that H00ðtÞ ¼ 0.
Then either (i) there exists a smallest k > 2 for which HðkÞð0Þ – 0
(call this value k1) or (ii) Hkð0Þ ¼ 0 for all k > 2. In Case (i), suppose

first that a :¼ Hðk1Þð0Þ > 0. A Taylor series expansion of H about 0
gives HðtÞ ¼ atk1 þ ) ) ) where the remaining terms are of order
tkþ1 and higher. Thus, for a sufficiently small m 2 ð0;qÞ, we
have H00ðtÞ ¼ k1ðk1 & 1Þatk1&2 þ ðterms of order tk1&1 and higherÞ
so H00ðtÞ > 0 for all t 2 ð0; mÞ. In particular, for any strictly positive
value of s less than m we have H00ðtÞ > 0 for all t 2 ½s=2; s". Thus, as
before, H00 is strictly convex on ½s=2; s". A similar argument (for
strict concavity) applies if Hðk1Þð0Þ < 0. In Case (ii) the Taylor
expansion of HðtÞ on ½0;qÞ centered on 0, shows that H00ðtÞ ¼ 0
for all t 2 ½0;qÞ. By integrating (twice) it follows that
HðtÞ ¼ ct þ Hð0Þ for all t 2 ½0;qÞ, for some constant c. Since
Hð0Þ ¼ 0, this gives HðtÞ ¼ ct, as claimed. !

Proof of Theorem 1. By Lemma 5, h and analytic and increasing in
½0;qÞ, so by Lemma 6, if we take HðtÞ ¼ hðtÞ then if h is not linear, it
is either strictly concave or strictly convex on an interval of the
form ½s=2; s" for some s 2 ð0;qÞ. Theorem 1 now follows from
Lemmas 3 and 4. !

Appendix B

The first and second derivatives of the expected corrected dis-
tance (Eq. (7)) with respect to the path length t are:

c½t"¼e
4t

3&3pinv

d½t"¼e
t hþ 4

3&3pinv

! "

@t
@t
¼

4&3ðeht&d½t"Þp2
invhþpinv eht 4þ3h½ "&4&3d½t"hð Þ

4 1&c½t"pinvþd½t"pinvð Þ 1þehtpinv&pinvð Þ

v½t"¼e
t hþ 8

3&3pinv

! "

w½t"¼e
t 3hþ 8

3&3pinv

! "

x½t"¼e
t 3hþ 4

3&3pinv

! "

y½t"¼e
2t hþ 2

3&3pinv

! "

m¼pinv&1

u½t"¼&16c½t"m2þ9ehtm3h2þ9v ½t"m3pinvh
2&9w½t"m2p2

invh
2

þx½t"p2
inv 4&3mhð Þ2þ16y½t"pinv 2þ3hþ3p2

invh&3pinv½1þ2h"
# $

&d½t"m 3p2
invð8&3hÞhþ9p3

invh
2þð4þ3hÞ2&3pinv½16þ16hþ3h2"

! "

@2t
@t2¼

pinvu½t"
12m 1&c½t"pinvþd½t"pinvð Þ2 1þehtpinv&pinvð Þ2

These were calculated using the Mathematica notebook included as
part of the supplementary materials.

Appendix C

Sequences were simulated on a Felsenstein-zone shaped tree
with a newick representation:

ððA : 0:025;A1 : 0:025Þ : 0:375;B : 0:025; ððC : 0:025;C1 : 0:025Þ
: 0:375;D : 0:025Þ : 0:025Þ;

The simulation model was the paired invariants model with the JC
substitution process and pinv ¼ 0:5. An equilibrium sequence length
of 100,000 was used. An insertion rate of 0.5 and a deletion rate of
1.0 were used for the variable blocks. This leads to a geometric
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distribution of sequence lengths for the variable blocks with a mean
length of 1.

Each dataset was analyzed using PAUP⁄’s commands:

dset dist = jc pinv = 0.5 objective = lsfit;
alltrees;

to conduct an exhaustive search of tree using the weighted
least-squares criterion and distances corrected under the correct
substitution model and value of pinv.

To demonstrate that there was sufficient information in the
simulated data to identify the tree, we implemented a method of
culling a proportion of the constant, gapless sites from a matrix
by assuming that the data were generated under the paired invari-
ants model with a particular value of pinv. This script is
paired_invariants_cull.py of the DendroBites repository
hosted at https://github.com/mtholder/DendroBites.

Culled datasets were analyzed in PAUP⁄ using the commands:

dset dist = jc pinv = 0 objective = lsfit;
alltrees;

to conduct an exhaustive search using the weighted least-squares
criterion and the JC distance correction with no among-site rate
heterogeneity.

Appendix D. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.ympev.2015.07.
027.
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