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Abstract—Graphs obtained from a binary leaf labeled (“phylogenetic”) tree by adding an edge so as to introduce a cycle provide a

useful representation of hybrid evolution in molecular evolutionary biology. This class of graphs (which we call “unicyclic networks”)

also has some attractive combinatorial properties, which we present. We characterize when a set of binary phylogenetic trees is

displayed by a unicyclic network in terms of tree rearrangement operations. This leads to a triple-wise compatibility theorem and a

simple, fast algorithm to determine 1-cycle compatibility. We also use generating function techniques to provide closed-form

expressions that enumerate unicyclic networks with specified or unspecified cycle length, and we provide an extension to enumerate a

class of multicyclic networks.

Index Terms—Phylogenetic tree, compatibility, circular orderings, generating function, galled-trees.
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1 INTRODUCTION

ALTHOUGH phylogenetic trees provide a useful represen-
tation of many evolutionary relationships and have

been well studied (see, for example, [4], [20]), there is
increasing interest in using nontree graphs to model
reticulate evolution. Indeed, during the last few years,
there has been a burst of activity in phylogenetic bioinfor-
matics in developing methods to reconstruct and model
reticulation—for example, see [1], [2], [6], [11], [7], [8], [9],
[10], [15], [22], [23]. Reticulate evolution can be due to a
variety of biological processes, including recombination,
horizontal gene transfer, genome fusion, and the formation
of hybrid species (as occurs in certain plant, insect, and
animal species) [14], [18]. The simplest type of nontree
graph are those that contain a single cycle, and it is this class
that we study here.

This class has recently come to prominence in the
description by Rivera and Lake [17] of a “ring of life” to
better understand the origin of eukaryotes. These authors
analyzed 10 complete genomes from prokaryotic and
eukaryotic organisms and found support for five conflicting
trees—nevertheless, these five unrooted trees fit perfectly
into a network with a single cycle (for further details, see
also [13]).

To describe these types of single-cycle networks further
and to outline our results, we first introduce some
definitions.

A binary phylogenetic tree (on X) is a tree T in which every
interior vertex has degree three and whose leaf set is X. The
set X is often referred to as the label set of T and its elements
as labels. For example, a binary phylogenetic tree is shown
in Fig. 1. Here, X ¼ fa; b; . . . ; lg. A unicyclic network (on X) is

a graph G that has exactly one cycle (of length at least three),

every interior vertex has degree three, and the set of degree-

one vertices is X. Thus, by deleting a single edge of the

cycle in G and suppressing the resulting degree-two

vertices, we obtain a binary phylogenetic X-tree. Indeed,

we say G displays a binary phylogenetic X-tree T if T can be

obtained from G in this way. In general, let P be a collection

of phylogenetic X-trees. Then, G displays P if G displays each

tree in P, in which case, we say that P is 1-cycle compatible.

To illustrate these definitions, the unicyclic network shown

in Fig. 2 displays the binary phylogenetic tree shown in

Fig. 1.
Note that, if G is a unicyclic network on X whose cycle

has length k, then G displays exactly k� 2 binary

phylogenetic trees on X. In particular, if k ¼ 3, then G
displays just one binary phylogenetic tree, namely, the tree

obtained from G by collapsing the cycle of length 3 to a

single vertex. Although one could exclude cycles of length 3,

we have found it convenient (particularly for enumerating

galled-trees) to allow them.
Two unicyclic networks G and G0 on X are isomorphic if

there is a graph isomorphism from G to G0 which, when

restricted to X, is the identity map.
One of the main questions that motivate this study is the

following: Given a collection P of binary phylogenetic trees

on X, when is P 1-cycle compatible? For jPj ¼ 2, this

question is closely related to tree rearrangement operations,

and the number of possible unicyclic networks that display

P is either 0, 1, or 3. When P has arbitrary size, the 1-cycle

compatibility question can be reduced to consideration of

triples of trees from P, allowing for a simple polynomial-

time algorithm.
In this paper, we also consider the enumeration of

unicyclic networks, where the cycle length is either

specified or left unspecified, and we use this to derive

further enumerative results. We then provide an extension

to count a certain class of networks (“galled-trees”) where

multiple cycles are allowed.
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1.1 Biological Relevance

The modeling and analysis of reticulate evolution is

currently a topical problem in systematic biology and

bioinformatics. Most studies to date have dealt only with

rooted trees as their input ([12], [16], [18]). Although certain

processes (such as the formation of hybrid species) are

normally viewed as requiring some time scale (i.e., at some

time in the past, two species exchanged genetic material), it

is often desirable to have techniques for describing

reticulate evolution when the input trees are unrooted.

This is because most tree reconstruction methods (such as

neighbor joining and maximum likelihood) output un-

rooted trees. We can formally ask whether conflicting

unrooted trees (perhaps from different genes) can be

reconciled by a single cycle, as in the study by Rivera and

Lake [17]. We show that this unrooted compatibility

question has a concise mathematical and algorithmic

description. In general, a unicyclic network may display

more trees than those provided as input to the algorithm,

however, these additional trees need not be regarded as

having any particular biological significance. We also

describe exact formulae for enumerating unicyclic networks

and generalizations to allow several disjoint cycles. The

underlying decomposition that leads to these formulae

may, in turn, be useful for sampling uniformly from the set

of such networks.
Of course, one may wish to consider more general and

complex structures for modeling reticulate evolution than

those considered in this paper—for example, by allowing

multiple intertwining cycles, or by allowing nonbinary trees

and networks. However, our aim here is to provide an

attractive mathematical foundation for a simple model of

reticulate evolution, rather than an algorithmic analysis of a

more complex scenario (for some approaches to the latter,

see [6], [10]).
We end this section with some preliminaries that will be

used throughout the paper.

1.2 Preliminaries

Throughout the paper, the notation and terminology follows

[20]: An X-split is a partition of X into two nonempty sets.

We denote the X-split whose blocks are A and B by AjB.

Associated with every phylogenetic X-tree T is a particular

collection of X-splits. This collection consists of those

X-splits AjB that are induced by the components of the

graph resulting from the deletion of a single edge e of T . We

say that the X-split AjB corresponds to e and let �ðT Þ denote

the set of X-splits that correspond to the edges of T .

Let � ¼ ðx1; x2; . . . ; xnÞ be a cyclic permutation of X. For

all 1 � i � j � n, let Aij ¼ fxk : i � k � jg and let ��ð�Þ
denote the set

��ð�Þ ¼ fAijjðX �AijÞ : 1 � i � j � n� 1g

of X-splits. Arranging the elements x1; x2; . . . ; xn clockwise

in a circle in the plane, we may view ��ð�Þ as the set of

X-splits that can be obtained by separating these elements

according to which side of a line segment in the plane they

lie on. Consequently, j��ð�Þj ¼ n
2

� �
. A collection � of

X-splits is said to be circular if � � ��ð�Þ for some cyclic

permutation � of X. In case �ðT Þ � ��ð�Þ for some

phylogenetic X-tree T , we say that � provides a circular

ordering for T . This last definition has an equivalent

formulation as follows: Suppose we embed T in the plane

and trace around the outside of T beginning at some leaf

x 2 X and eventually returning to x (in this way, each edge

of T is traversed exactly twice—once in each direction). The

order in which the elements of X are met in this tracing

induces a circular ordering for T . The set of circular

orderings for T is precisely the set of orderings on X that

are induced by tracing across all planar embeddings of T .

Similarly, we have an analogous notion of a circular ordering

for a unicyclic network.

2 1-CYCLE COMPATIBILITY

In this section, we investigate the problem of determining

precisely when a collection P of binary phylogenetic X-trees

is 1-cycle compatible. This problem is motivated by the

analysis in [17]. In the case jPj ¼ 2, this problem has an

attractive solution in terms of tree rearrangements which

we describe next. This solution will enable us to handle the

case jPj � 3 later in the section.
Let T be a binary phylogenetic X-tree and let e ¼ fu; vg

be an edge of T . Let T 0 be the binary phylogenetic X-tree

that is obtained from T by deleting e and then attaching the

component Cv that contains v to the component Cu that

contains u by adjoining a new edge f from Cv to Cu so that,

once degree-two vertices are suppressed, the resulting tree

is a binary phylogenetic X-tree. The two tree rearrangement

operations that we now describe are restricted by how this

new edge is adjoined. We begin with the least restrictive

operation.
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Fig. 1. A binary phylogenetic tree.

Fig. 2. A unicyclic network.



. We say that T 0 has been obtained from T by a tree
bisection and reconnection (TBR) if there is no
restriction on f .

. We say that T 0 has been obtained from T by an
(unrooted) subtree prune and regraft (SPR) if one end-
vertex of f is v.

Observe that SPR is a special case of TBR. For further
details of tree rearrangement operations, see [20].

The diagram shown in Fig. 3 is a schematic representa-
tion of a single TBR operation, where T 1 and T 2 are
two binary phylogenetic X-trees. If B and E are both empty,
then T 1 is isomorphic to T 2 and, so, the TBR operation is
redundant. Furthermore, it is easily checked that the
TBR operation is an SPR operation precisely if either jA [
B [ Cj ¼ 1 or jD [E [ F j ¼ 1, or one of B or E is empty.
We will make use of this diagram in the next section and we
may assume that, provided jA [B [ Cj; jD [ E [ F j � 2, we
have jAj; jCj; jDj; jF j � 1.

Tree rearrangement operations play an important role
in phylogenetics. One reason for this is that they each
induce a metric on the collection of binary phylogenetic
X-trees and, thus, enable one to quantify the “closeness”
of any pair of such trees. In particular, let T 1 and T 2 be
two binary phylogenetic X-trees and let � 2 fSPR;TBRg.
The �-distance between T 1 and T 2 is the minimum
number of operations that is required to transform T 1

into T 2. We denote this distance by d�ðT 1; T 2Þ. It is well-
known that, for each �, one can always get from T 1 to
T 2 by such a sequence of operations and

dTBRðT 1; T 2Þ � dSPRðT 1; T 2Þ � 2dTBRðT 1; T 2Þ:

Theorem 1. Let T 1 and T 2 be two distinct binary phylogenetic
X-trees. Then, there is a unicyclic network G on X that
displays fT 1; T 2g if and only if dTBRðT 1; T 2Þ ¼ 1. Moreover,
in that case, there are unique edges e1 and e2 such that, up to
suppressing degree-two vertices, Gne1 is isomorphic to T 2 and
Gne2 is isomorphic to T 1.

Proof. Suppose that there is a unicyclic network G on X that
displays both T 1 and T 2. Then, as T 1 and T 2 are distinct,
it follows by definition that there are two distinct edges
e1 and e2 such that, up to suppressing degree-two
vertices, Gne1 and Gne2 are isomorphic to T 1 and T 2. This
implies that, for each i, T i can be obtained from
Gnfe1; e2g by adding ei in the appropriate way. By the
definition of TBR, we deduce that dTBRðT 1; T 2Þ ¼ 1.

Now, suppose that dTBRðT 1; T 2Þ ¼ 1. Then, up to
suppressing degree-two vertices, T 2 can be obtained
from T 1 by deleting an edge, say, e1 in T 1, and then
joining the resulting components by a new edge, say, e2.
Now, let G be the graph that is obtained from T 1 by
adding e2 so that Gne1 is isomorphic to T 2. Since adding
e2 creates exactly one cycle, it follows that G is a unicyclic

network on X. Moreover, up to suppressing degree-two
vertices, Gne1 and Gne2 are isomorphic to T 1 and T 2,
respectively. Thus, G displays T 1 and T 2. Last, suppose
there is a unicyclic network G on X that displays T 1 and
T 2. Since no two distinct edges f and f 0 of the cycle of G
have the property that Gnf is isomorphic to Gnf 0, it
follows that the choice of e1 and e2 is unique. This
completes the proof of the theorem. tu

Proposition 1. Let T 1 and T 2 be two distinct binary
phylogenetic X-trees. If fT 1; T 2g is 1-cycle compatible, then
�ðT 1Þ [ �ðT 2Þ is circular.

Proof. Let G be a unicyclic network on X that displays T 1

and T 2. Let x 2 X. Viewing G drawn in the plane with its
leaves on the outside of the cycle, trace around the
outside of G beginning at x, eventually returning to x. Let
� be the cyclic permutation of X induced by the order in
which the elements of X are met in this tracing. It is now
easily checked that � is a circular ordering for both T 1

and T 2, thus, completing the proof of the proposition. tu
We remark here that the converse of Proposition 1 does

not hold. For a counterexample, consider the pair of trees
fT 1; T 2g in Fig. 4. Then, with � ¼ ð1; 2; . . . ; 6Þ, we have
�ðT 1Þ [ �ðT 2Þ � ��ð�Þ, and, so, �ðT 1Þ [ �ðT 2Þ is circular.
However, dTBRðT 1; T 2Þ � 2 and, therefore, by Theorem 1,
fT 1; T 2g is not 1-cycle compatible.

We now consider the problem of determining precisely
when an arbitrary collection of binary phylogenetic X-trees
is 1-cycle compatible. To this end, we begin with the
following proposition:

Proposition 2. Let T 1 and T 2 be two binary phylogenetic trees
on X and suppose that fT 1; T 2g is 1-cycle compatible. Then:

1. If dSPRðT 1; T 2Þ 6¼ 1, there is exactly one unicyclic
network on X that displays T 1 and T 2.

2. If dSPRðT 1; T 2Þ ¼ 1 and the pruned subtree consists of
a single leaf, there is exactly one unicyclic network on
X that displays T 1 and T 2.

3. If dSPRðT 1; T 2Þ ¼ 1 and the pruned subtree has at
least two leaves, there are exactly three unicyclic
networks on X that display T 1 and T 2.

Proof. It follows by the definition of display that all
unicyclic networks on X that display both T 1 and T 2

can be obtained by starting with T 1 and adjoining a
new edge e2. The edge e2 is added in such a way that
T 2 can be obtained from the resulting unicyclic network
on X by deleting an edge e1. By Theorem 1, there is
exactly one choice for e1. Thus, to prove the proposition,
it suffices to consider the possible ways by which e2 can
be added to T 1. In establishing each of items 1-3, we
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Fig. 3. A schematic diagram of a TBR operation.

Fig. 4. A counterexample to the converse of Proposition 1.



make use of the schematic diagram of a TBR operation
shown in Fig. 3. With regard to this diagram, it is clear
that e2 must join an edge of the minimal subtree of T 1

that connects A [B [ C to an edge of the minimal
subtree of T 1 that connects D [ E [ F . Furthermore, as
dTBRðT 1; T 2Þ ¼ 1 or dSPRðT 1; T 2Þ ¼ 1, we have jXj � 4.

First, consider item 1. Since dTBRðT 1; T 2Þ ¼ 1, but
dSPRðT 1; T 2Þ 6¼ 1, we may assume that

jAj; jBj; jCj; jDj; jEj; jF j � 1

in Fig. 3. By noting that AjðX �AÞ; CjðX � CÞ; DjðX �
DÞ; F jðX � F Þ are all X-splits of T 2, this added edge
cannot be joined to edges in any of the subtrees labeled
A, C, D, and F . Furthermore, as ðA [BÞjðX � ðA [BÞÞ
and ðE [ F ÞjðX � ðE [ F ÞÞ are both X-splits of T 2, this
added edge cannot be joined to edges in B or E. It now
follows that there is exactly one way in which e2 can be
appropriately added to T 1. Thus, there is exactly
one unicyclic network on X that displays both T 1 and
T 2. This unicyclic network is schematically shown in
Fig. 5, where B1; . . . ; Bi (i � 1) are the subtrees of B
attached to the path from e1 to e2, and E1; . . . ; Ej (j � 1)
are the subtrees of E attached to the path from e2 to e1.

Now, consider item 2. Without loss of generality, we
may assume that, in Fig. 3, jAj ¼ 1 and B and C are both
empty. Using an approach similar to that in item 1, it is
easily seen that, in this case, there is also exactly
one unicyclic network on X that displays both T 1 and T 2.

Last, consider item 3. In this case, as dSPRðT 1; T 2Þ ¼ 1
and the pruned subtree has at least two leaves, precisely
one of B or E is empty and jAj; jCj; jDj; jF j � 1. Without
loss of generality, we may assume that B is empty, in
which case, E is nonempty. Again, using the approach
used in item 1, we deduce, in this case, that there are
exactly three unicyclic networks onX that display both T 1

and T 2. These three unicyclic networks are schematically

shown in Fig. 6. This completes the proof of the
proposition. tu

Theorem 2. Let P0 be a collection of binary phylogenetic trees on

X with jP0j � 3. Then, P0 is 1-cycle compatible if and only if,

for all subsets P of size three, P is 1-cycle compatible, in which

case, there is a unique unicyclic network on X that displays P0.
Proof. If there is a unicyclic network G on X that displays

P0, then every 3-element subset of P0 is displayed by G.

This proves one direction of the theorem.
For the converse, suppose that P is 1-cycle compatible

for every 3-element subset P of P0. First, assume that
there is a pair T 1 and T 2 in P0 such that either the
assumptions of items 1 or 2 in the statement of
Proposition 2 hold. In either case, it follows by Proposi-
tion 2 that there is exactly one unicyclic network, say, G,
on X that displays T 1 and T 2. Since G is unique and
every 3-element subset of P0 is 1-cycle compatible, we
now deduce that, for each i 2 f3; 4; . . . ; jP0jg, there is
exactly one unicyclic network that displays fT 1; T 2; T ig
and that this unicyclic network is always G. Hence, in
this case, P0 is 1-cycle compatible and there is a unique
unicyclic network on X that displays P0.

Now, assume that, for every pair of trees in P0, the
assumptions of item 3 in Proposition 2 hold. Let T 1 and
T 2 be a pair of trees in P0. Then, by Proposition 2, there
are exactly three unicyclic networks, say, G1, G2, and G3,
on X that display T 1 and T 2. Now, consider fT 1; T 2; T ig,
where T i 62 fT 1; T 2g. By assumption, there is a unicyclic
network on X that displays fT 1; T 2; T ig. Moreover, this
tree must be one of the three unicyclic networks that
display T 1 and T 2. For each j 2 f1; 2; 3g, it follows by
Theorem 1 that, up to degree-two vertices, there is a
unique pair of edges in Gj such that the deletion of one
results in T 1 and the deletion of the other results in T 2. By
considering the remaining edges of the cycles of G1, G2,
and G3, it is straightforward to deduce that the binary
phylogenetic X-trees that result by deleting such an edge
are distinct. This implies that there is exactly one unicyclic
network on X that displays fT 1; T 2; T ig. If, for all i, the
unicyclic network displaying fT 1; T 2; T ig is the same,
then P0 is 1-cycle compatible and this unicyclic network
onX is the only such network. Therefore, assume that, for
some distinct i and j, the unicyclic network that displays
fT 1; T 2; T ig is not isomorphic to the unicyclic network
that displays fT 1; T 2; T jg. We may also assume that the
former network is G1 and the latter network is G2. By an
argument similar to that used earlier in this paragraph,
there is a unique unicyclic network that displays
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Fig. 5. A schematic view of the unicyclic network described in item 1 of

Proposition 2.

Fig. 6. A schematic view of the unicyclic networks described in item 3 of Proposition 2.



fT 1; T i; T jg. Since G1 displays fT 1; T ig, we deduce that it
is G1. But G1 does not display T j; a contradiction. This
completes the proof of the theorem. tu

The sufficient part of the hypothesis in Theorem 2 is
sharp in the sense that it is not sufficient for P0 to be 1-cycle
compatible if every subset of P0 of size two is 1-cycle
compatible. To see this, take P0 to be the collection
consisting of all three binary phylogenetic X-trees, where
jXj ¼ 4. Then, it is easily checked that each of the
three 2-element subsets of P0 are 1-cycle compatible.
However, the union of the X-splits of the trees in P0 is not
circular and, so, by the contrapositive of Proposition 1, P0 is
not 1-cycle compatible.

Theorem 1, Proposition 2, and Theorem 2 provide the
basis and validity for the following polynomial-time
algorithm for determining the 1-cycle compatibility of a
collection of binary phylogenetic X-trees. We leave the
formal details to the reader.

Algorithm: 1-CycleCompatibilityðP;GÞ
Input: A collection P of binary phylogenetic X-trees.

Output: A unicyclic network G on X that displays P or the

statement P is not 1-cycle compatible.

1. Choose any two trees T 1 and T 2 in P.

2. Decide whether or not dTBRðT 1; T 2Þ ¼ 1.

a. If no, then halt and return P is not 1-cycle compatible.
b. If yes, then construct a unicyclic network G on X that

displays T 1 and T 2. In the case dSPRðT 1; T 2Þ ¼ 1 and

the pruned subtree has at least two leaves, construct

all three unicyclic networks G1, G2, and G3 on X that

display T 1 and T 2.

3. Select another tree T 3 2 P.

a. If exactly one unicyclic network is constructed in the

previous step, then check to see whether or not G
displays T 3. If not, then halt and return P is not

1-cycle compatible.

b. If three unicyclic networks are constructed in the

previous step, then check to see whether or not G1, G2,

or G3 displays T 3. (At most, one such tree has this

property.) If not, then halt and return P is not 1-cycle

compatible.

4. Let G denote the unicyclic network that displays
fT 1; T 2; T 3g. For each T i 2 P � fT 1; T 2; T 3g, check to

see whether or not G displays T i. If not, then halt and

return P is not 1-cycle compatible. Otherwise, return G.

3 COUNTING UNICYCLIC NETWORKS

In this section, we use generating functions to derive the
following exact expressions for the number of distinct
unicyclic networks on a fixed set X.

Theorem 3. Let X be a finite set of size n � 3.

1. Let cðnÞ denote the number of unicyclic networks on
X. Then,

cðnÞ ¼ ðn� 1Þ!2n�2 � ð2n� 2Þ!
ðn� 1Þ!2n�1

:

2. For each k � 3, let cðn; kÞ denote the number of
unicyclic networks on X whose unique cycle is of
length k. Then,

cðn; kÞ ¼ ð2n� k� 1Þ!
ðn� kÞ!2n�kþ1

:

In proving Theorem 3, we make use of the following
notation: For a power series fðxÞ, we let ½xn�fðxÞ denote the
coefficient of xn in fðxÞ.

For jXj � 2, a rooted binary phylogenetic X-tree is a rooted
tree whose root has degree two and every other interior
vertex has degree three, and whose leaf set is X. If jXj ¼ 1,
then the tree consisting of a single-root vertex labeled by the
element in X is a rooted binary phylogenetic X-tree. For all
n � 1, let rðnÞ denote the number of rooted binary
phylogenetic trees on a set X of size n. For each n � 2, the
number rðnÞ is given by

rðnÞ ¼ ð2n� 2Þ!
ðn� 1Þ!2n�1

¼ 1� 3� 	 	 	 � ð2n� 3Þ; ð1Þ

a well-known result that dates back to 1870 [19].
For establishing Theorem 3, it will be convenient for us to

consider one particular way in which rðnÞ can be derived. Let

RðxÞ ¼
X
n�1

rðnÞx
n

n!

be the exponential generating function for rðnÞ. Now, notice
that, if we delete the root of a binary phylogenetic tree that
has n � 2 leaves along with its two incident edges, we
obtain an unordered pair of rooted phylogenetic binary
trees for which the numbers of labeled leaves in the
resulting pair of trees sum to n. Since the labels can be
distributed freely between these two trees, it follows that,
for all n � 2,

rðnÞ ¼ 1

2

Xn�1

i¼1

n

i

� �
rðiÞrðn� iÞ:

This expression for rðnÞ translates into the more succinct
equation

RðxÞ ¼ 1

2
RðxÞ2 þ x: ð2Þ

The term “þx” in (2) accounts for the case where we have
just a single isolated root vertex. If we regard (2) as a
quadratic equation (in RðxÞ), and choose the root whose
power series has nonnegative coefficients, we get

RðxÞ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2x
p

: ð3Þ
Now, for all n � 1,

½xn�ð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2x
p

Þ ¼ ð2n� 2Þ!
n!ðn� 1Þ!2n�1

:

Therefore, as rðnÞ ¼ n!½xn�RðxÞ, we obtain (1).
We now introduce two further exponential generating

functions. Let

CðxÞ ¼
X
n�3

cðnÞx
n

n!
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and, for all k � 3, let

CkðxÞ ¼
X
n�3

cðn; kÞx
n

n!

denote the exponential generating functions for cðnÞ and

cðn; kÞ, respectively, where n � 3. Both these generating

functions are closely related to RðxÞ. In particular,

cðn; kÞ ¼ 1

2k

X
ðn1;...;nkÞ:n1þ			þnk¼n

n!

n1! 	 	 	nk!
Yk
i¼1

rðniÞ: ð4Þ

To justify the right-hand side of (4), first, note that the term

n!

n1! 	 	 	nk!
counts the number of k-tuples of sets of sizes n1; . . . ; nk that

form a partition of the set X (of size n), and the termQk
i¼1 rðniÞ is the number of choices of rooted binary

phylogenetic trees that have specified leaf sets of sizes

n1; . . . ; nk, where, for each i, ni � 1. However, each unicyclic
network with cycle length k generates exactly 2k such

k-tuples of rooted binary phylogenetic trees, since we have

k choices for which tree starts the cycle, and there are
two directions that the cycle can be traversed. Equation (4)

means that we may write CkðxÞ much more elegantly as

2CkðxÞ ¼
1

k
RðxÞk: ð5Þ

Since CðxÞ ¼
P

k�3 CkðxÞ, it follows by (5) that the following

relationship between CðxÞ and RðxÞ holds:

2CðxÞ ¼ 1

3
RðxÞ3 þ 1

4
RðxÞ4 þ 	 	 	 : ð6Þ

Using the identity

� logð1� tÞ ¼ tþ 1

2
t2 þ 1

3
t3 þ 	 	 	 ;

we can rewrite (6) as

CðxÞ ¼ 1

2
�RðxÞ � 1

2
RðxÞ2 � logð1�RðxÞÞ

� �
: ð7Þ

Replacing the term logð1�RðxÞÞ in (7) by logð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2x
p

Þð¼
1
2 logð1� 2xÞÞ as allowed by (3) and, then, the remaining

term in (7), namely, �RðxÞ � 1
2RðxÞ

2, by x� 2RðxÞ as

allowed by (2), we get

CðxÞ ¼ 1

2
x�RðxÞ � 1

4
logð1� 2xÞ:

The expression for cðnÞ in the statement of Theorem 3 now

follows by routine manipulation. This establishes item 1.
To prove item 2, we first evaluate ½xn�RðxÞk. Notice that one

can writeRðxÞ ¼ x�ðRðxÞÞ for the function�ðxÞ ¼ ð1� 1
2 xÞ

�1.

In such a situation, there is a convenient tool for extracting

½xn�RðxÞk known as the Lagrange inversion formula. This

formula (see [5] for details) states the following: Given two

(formal) power series  ðxÞ ¼
P

i�0 ci�
i, where c0 6¼ 0 and

fð�Þ ¼
P

i�0 di�
i, there exists a unique power serieswðtÞ such

that wðtÞ ¼ t ðwðtÞÞ and, for each n > 0,

½tn�fðwðtÞÞ ¼ 1

n
½�n�1�f 0ð�Þ nð�Þ;

where f 0ð�Þ ¼
P

i�1 idi�
i�1 denotes the formal derivative of

f . Applying this formula here (as was similarly applied in
[3]), we obtain

½xn�RðxÞk ¼ 1

n
½�n�1�k�k�1�ð�Þn

¼ k

n
½�n�k� 1� 1

2
�

� ��n

¼ k

n

2n� k� 1

n� k

� �
2k�n:

Therefore, by (5),

cðn; kÞ ¼ n! 	 1

2k
½xn�RðxÞk ¼ ð2n� k� 1Þ!

ðn� kÞ!2n�kþ1
:

This establishes item 2.
We end this section with the following consequence of

Theorem 3 for which we recall the definition of a circular
ordering of a unicyclic network from the introduction:

Corollary 1. Let X be a finite set of size n � 3.

1. Let G be a unicyclic network on X whose unique cycle
has length k. Then, the number of distinct circular
orderings for G is 2n�kþ1.

2. Let � be a cyclic permutation of X. Then, the number
of unicyclic networks on X whose cycle has length k
and for which � is a circular ordering is

2n� k� 1

n� 1

� �
:

Proof. To prove item 1, we first note that a binary
phylogenetic tree with m leaves, where m � 3, has
precisely 2m�2 circular orderings (see, for example,
[20]). Now, let m1;m2; . . .mk denote the number of
elements of X that appear (as leaves) on the k subtrees
that are incident with the k vertices of the cycle in the
unicyclic network G. Then, as the cycle of G can be
traversed in two directions, it is now straightforward to
see that the number of circular orderings for G is

2
Yk
i¼1

2ðmiþ1Þ�2 ¼ 2n�kþ1:

Note that replacing mi by mi þ 1 in the exponent
recognizes that the subtree that has mi leaves from X
can be viewed as a binary tree with mi þ 1 leaves in total
if we include the vertex on the cycle that the subtree
attaches to. This establishes item 1.

For the proof of item 2, let cðn; k; �Þ denote the number
of unicyclic networks on X whose unique cycles each
have length k and for which � is a circular ordering. To
evaluate cðn; k; �Þ, we will count the number of ordered
pairs ðG; �Þ, where G is unicyclic network on X whose
unique cycle has length k and � is a circular ordering for
G. We do this count in two ways. First, by Theorem 3,
item 2, there are

ð2n� k� 1Þ!
ðn� kÞ!2n�kþ1
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unicyclic networks whose unique cycle has length k.
Furthermore, for each such network, there are precisely
2n�kþ1 circular orderings, by item 1. Hence, the number
of ordered pairs ðG; �Þ is

ð2n� k� 1Þ!
ðn� kÞ! :

Alternatively, we can calculate this number by noting
that the number of cyclic permutations on X is ðn� 1Þ!
and, for every such cyclic permutation �, the number of
unicyclic networks on X whose unique cycle has length k
and for which � is a circular ordering is cðn; k; �Þ.
Equating these two counts, we deduce item 2. tu

4 COUNTING GALLED-TREES

In this section, we extend Theorem 3, item 2, to networks
that contain k “independent” cycles. The following defini-
tion is motivated by the terminology of [6] and [16] in the
rooted digraph setting.

A (unrooted binary) galled-tree (on X) is a graph G that
has the following properties:

1. every vertex is in at most one cycle,
2. every nonleaf vertex has degree three, and
3. the set of degree-one vertices is X.

For example, Fig. 7 shows a galled-tree with two cycles.
The purpose of this section is to establish Theorem 4.

Theorem 4. For a fixed finite set X of size n, let gðn; k;mÞ denote
the number of galled-trees on X containing k cycles and
having a total of m edges across all the cycles. Then, for
n;m; k � 0, we have

gðnþ 2; k;mÞ ¼ ð2n�mþ 3kÞ!ðm� 2k� 1Þ!2m�n�3k

ðn�mþ 2kÞ!ðm� 3kÞ!ðk� 1Þ!k!

if 3 � 3k � m � nþ 2k or k ¼ m ¼ 0, and gðnþ 2; k;mÞ ¼
0 otherwise.

Proof. First note that, in order for gðnþ 2; k;mÞ to be
nonzero, we must have that, if k ¼ 0, then m ¼ 0.
Furthermore, if k > 0, then we require that m � 3k (since
every cycle has at least three edges) and the inequality
m � nþ 2k must also apply (by a simple counting
argument).

Let

G ¼ Gðx; y; zÞ ¼
X

n;m;k�0

gðnþ 1; k;mÞx
nykzm

n!
:

Thus,

G ¼ xþ 1

2!
x2 þ 1

2!
x2yz3 þ 3

3!
x3 þ 3

3!
x3yz3 þ 3

3!
x3yz4

þ 3

3!
x3y2z6 þ 15

4!
x4 þ 	 	 	

Notice that

gðnþ 1; k;mÞ ¼ n!½xnykzm�Gðx; y; zÞ; ð8Þ

where ½xnykzm�Gðx; y; zÞ denotes the coefficient of xnykzm

in G.
Given a galled-tree on X, we say that the rooted graph

obtained by subdividing any edge of the network and
distinguishing the resulting degree 2 vertex as a root is a
rooted galled-tree network on X. In this way, we may
regard gðnþ 1; k;mÞ as counting the number of rooted
galled-trees on X that have k cycle and m edges across all
cycles (since there is a bijection between unrooted binary
galled-trees on X [ f�g (where � is a label not in X) and
rooted binary galled-trees on X).

This rooting leads to the following fundamental
recursion for G:

G ¼ xþ 1

2
G2 þ 1

2
yz3G2ð1� zGÞ�1 ð9Þ

(the term 1
2G

2 counts the cases where the root of the

rooted galled-tree does not lie on a cycle, while the term
1
2 yz

3G2ð1� zGÞ�1 counts the other cases).
From (9), it follows that G ¼ x�ðG; y; zÞ, where

�ðG; y; zÞ ¼ 1� 1

2
G 1þ yz3

ð1� zGÞ

� �� ��1

:

Again, applying the Lagrange inversion formula, this

time to (9), we have

½xnykzm�Gðx; y; zÞ ¼ 1

n
½�n�1ykzm��ð�; y; zÞn: ð10Þ

Now, applying the identity

ð1� �Þ�n ¼
X
i�0

nþ i� 1

i

� �
�i ð11Þ

to � ¼ 1
2�ð1þ

yz3

ð1�z�ÞÞ, we obtain

�ð�; y; zÞn ¼
X
i�0

2�i
nþ i� 1

i

� �
�i 1þ yz3

ð1� z�Þ

� �i
:

Thus,

½�n�1ykzm��ð�; y; zÞn ¼
X
i�0

2�i
nþ i� 1

i

� �
½�n�i�1ykzm�

1þ yz3

ð1� z�Þ

� �i
:

ð12Þ

Now,

½yk� 1þ yz3

ð1� z�Þ

� �i
¼ i

k

� �
z3kð1� z�Þ�k
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Fig. 7. A galled-tree with two cycles.



and

½�n�i�1zm�z3kð1� z�Þ�k ¼ ½�n�i�1zm�3k�ð1� z�Þ�k:

Furthermore, again invoking (11), we have

½�n�i�1zm�3k�ð1� z�Þ�k ¼
m�2k�1
m�3k

� �
; if n� i� 1 ¼ m� 3k;

0; otherwise:

(

Thus, the only nonzero term in (12) occurs when i ¼
n�mþ 3k� 1 and, for this value of i, we have

½�n�1ykzm��ð�; y; zÞn ¼ 2�i
nþ i� 1

i

� �
i

k

� �
m� 2k� 1

m� 3k

� �
:

Substituting this expression into (10) and (8), together

with some routine algebra, we obtain the result

described. tu
Note that setting k ¼ 1 gives the expression

gðnþ 2; 1;mÞ ¼ ð2n�mþ 3Þ!
ðn�mþ 2Þ!2n�mþ3

in Theorem 3, item 2.
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