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A series of new results useful to the study of DNA
sequences using Markov models of substitution are
presented with proofs. General time-reversible dis-
tances can be extended to accommodate any fixed
distribution of rates across sites by replacing the
logarithmic function of a matrix with the inverse of a
moment generating function. Estimators are pre-
sented assuming a gamma distribution, the inverse
Gaussian distribution, or a mixture of either of these
with invariant sites. Also considered are the different
ways invariant sites may be removed and how these
differences may affect estimated distances. Through
collaboration, we implemented these distances into
PAUP* in 1994. The variance of these new distances is
approximated via the delta method. It is also shown
how to predict the divergence expected for a pair of
sequences given a rate matrix and a distribution of
rates across sites, allowing iterated ML estimates
of distances under any reversible model. A simple test
of whether a rate matrix is time reversible is also
presented. These new methods are used to estimate the
divergence time of humans and chimps from mtDNA
sequence data. These analyses support suggestions
that the human lineage has an enhanced transition
rate relative to other hominoids. These studies also
show that transversion distances differ substantially
from the overall distances which are dominated by
transitions. Transversions alone apparently suggest a
very recent divergence time for humans versus chimps
and/or a very old (.16 myr) divergence time for hu-
mans versus organgutans. This work illustrates graphi-
cally ways to interpret the reliability of distance-based
transformations, using the corrected transition to trans-
version ratio returned for pairs of sequences which are
successivelymorediverged. r 1997 Academic Press

INTRODUCTION

Failure to allow for unequal substitution rates at
different sites in two aligned sequences can lead to

serious underestimates of the true distance between
them (Golding, 1983). Furthermore, this underestima-
tion becomes progressively worse the larger the true
distance, which in turn compromises the additivity
necessary for transformed distance phylogenetic meth-
ods to be guaranteed consistent (Felsenstein, 1982, 1984,
1993). If this error becomes serious enough, parallelisms
and convergences due to multiple substitutions at a site
(which occur predominantly between long edges of a tree)
can outweight parsimony informative characters (Felsen-
stein, 1978; Hendy and Penny, 1989). This effect is often
termed ‘‘long edges attract,’’ as such edges (or internodes,
as defined below) may be spuriously joined together by tree
reconstruction methods (including distance methods),
even when all other aspects of the model are correct
(e.g., Hasegawa and Fujiwara, 1993; Lewis and Gaut,
1995; Waddell, 1995; Chang, 1996; Lockhart et al.,
1996). Failure to account for unequal base compositions
in the sequence also leads to a progressive underesti-
mate of the true distance (e.g., Tamura, 1992), with
similar effects expected upon tree selection.

The general time-reversible distance is the most
general transformation that can be applied to a pair of
DNA sequences which aims to return the expected
average number of substitutions per site. This distance
was first described by Lanave et al. (1984), and in a
different, but numerically and algebraically equivalent,
form by Tavaré (1986), Barry and Hartigan (1987), and
Rodrı́guez (1990). [Gillespie (1986) and Zharkikh (1994)
note that the Lanave et al. distance is time reversible
and not a more general 12-parameter model; Waddell
(1995) notes the numerical identity, while Swofford and
Lewis (1997) provide a proof.] This paper aims to explain to
biologists the assumptions of these distances and to clarify
some earlier misconceptions. Importantly, nearly all of the
currently used distance estimates (including those of
Tamura, 1992; Tamura and Nei, 1994) are special cases
(restrictions) of the general time-reversible distance
(see Zharkikh, 1994; Swofford et al., 1996).

A general time-reversible distance assumes a general
time-reversible model of evolution, which is a model
where the probability (or likelihood) of the data is
independent of the placement of the root on the tree
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(Felsenstein, 1981; Adachi and Ahasegawa, 1994; Yang,
1994). With the exception of some special matrices (the
Kimura 3 ST being the most general; e.g., Hendy et al.,
1994), this further impilies the relative rates of all
substitutions remain constant across the tree (that is, a
homogeneous model) and that the root base composi-
tion is in equilibrium. This in turn implies that all
states in the model (e.g., the four nucleotides A, C, G,
and T) remain at the same frequencies; that is, they
(and the model) are said to be stationary. Given this
model, it is possible to make estimates of the rates of all
types of substitution using just pairs of sequences
(Lanave et al., 1984; Tavaé, 1986).

A variety of specific distances have been modified
to take unequal substitution rates across sites into
account. These include the Jukes–Cantor (1-param-
eter) and Kimura (2-parameter) distances (Golding,
1983; Olsen, 1987; Jin and Nei, 1990) and a specific
6-parameter distance (Tamura and Nei, 1993; each
allowing a t distribution of site rates). In addition, a
variety of methods to calculate likelihoods of the data
under similar conditions have been used (Hasegawa et
al., 1985; Churchill et al., 1992; Reeves, 1992; Sidow et
al., 1992; Steel et al., 1993; Yang, 1993; Waddell, 1995;
Felsenstein and Churchill, 1996; Waddell and Penny,
1996; Waddell et al., 1997a).

An important case of unequal rates across sites is the
existence of some sites which are incapable of changing
due to biological constraints. These invariant (invari-
able) sites lead to distortions of estimated distances
(Shoemaker and Fitch, 1989), and in some cases to
inconsistency of tree selection (e.g., Hasegawa and
Fujiwara, 1993; Waddell, 1995; Chang, 1996; Lockhart
et al., 1996; Waddell et al., 1997a). Here we consider
how time-reversible distances may be modified to take
these sites into account, especially when the base
composition of these sites does not reflect that of the
variable sites (Waddell, 1995).

A primary motivation for this work was to have
distances to both infer trees and more accurately
estimate the edge lengths on trees. Such weighted trees
(i.e., trees with estimated edge lengths) are critical for
inferring the divergence times of many taxa (e.g., Hillis
et al., 1996; Waddell and Penny, 1996). We use an
example from Waddell and Penny (based on 5 kb of
hominoid mtDNA sequences from Horai et al., 1992) to
illustrate the new methods and to infer the divergence
time of human versus chimp lineages.

Recently an extension of the general time-reversible
distance has been proposed to accommodate any distri-
bution of rates across sites (Waddell, 1995; Swofford et
al., 1996; Waddell and Steel, 1996). Here we describe a
biological and mathematical framework for the use of
this distance. Our work with Dr. David Swofford has
incorporated this general distance into the phylogenet-
ics package PAUP 4.0 (Swofford, 1997), where it can be

used with a wide variety of tree selection and evalua-
tion criteria (Waddell et al., 1997b).

Some terms and abbreviations used in this paper:

c the sequence length
CSR constant site removal (from the data)
d a transformed distance estimate
F a matrix of proportions of aligned paired nucleo-

tides
F# matrix F symmetrized
i.r. assuming all site are evolving at an identical

intrinsic rate
pinv the proportion of invariant (invariable) sites
ti/tv transition to transversion ratio

A rate matrix, R, contains the underlying relative
rates of substitution, unaffected by multiple hits. Rates
of change form base i to j are always nonnegative and,
biologically, can be regarded as always positive. Rates
of change from i to i (i.e., no change) are negative numbers
(shown on the diagonal as *). As such, their magnitude is
minus the sum of the rates at which i is changing to
other bases; consequently all rows in R will sum to zero.

Last, please note the rationale for the use of the term
‘‘edge,’’ our preferred term to define an ‘‘internode’’ or
‘‘link’’ in a tree. Some phylogeneticists call an edge a
‘‘branch,’’ but branch has multiple meanings, so can be
an ambiguous or misleading term (e.g., Penny et al.,
1992; Waddell, 1995). For example, when the founders
of phylogenetics refer to a branch, they often mean all
the descendants of an ancestor. Darwin (1859) follows
this convention. He also has an especially dynamic
usage, where some branches (groups of species) keep
growing and shading (out-competing) other branches
(those with fewer tips or extant taxa). We follow
Darwin’s usage, which is clearly incompatible with
those who would equate branch with internode.

MATERIALS AND METHODS

Time Reversible Distances: Their Form
and Assumptions

If all sites evolve at an identical rate (i.r.) the general
time-reversible distance can be written (Rodrı́guez et
al., 1990) in the form

di j 5 2trace(P ln [P21F]), (1)

where di j is the distance between sequences i and j
measured as the expected number of substitutions per
site (including multiple changes at a site), P is a
diagonal matrix of the nucleotide base composition of
the sequences, F is the divergence matrix of sequences i
and j, and ln is the matrix logarithm function. The
divergence matrix is just the expected proportion of
times one state is aligned next to another state in the
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two sequences (Fig. 1). The logarithm of a matrix X is
defined as ln (X) 5 Sn51

` (I 2 X)n/n, where I is the identity
matrix, provided this limit exists. Under a time-reversible
process of evolution, all F matrices are symmetric in
expectation (e.g., Tavaré, 1986; Barry and Hartigan, 1987).
In dealing with finite samples, P and F are replaced with
their sample estimates (these are denoted by P̂ and F̂).
Furthermore, F̂ is then replaced by F#, a symmetrized form
of F̂. This is done to reduce sampling errors, and F# is
shown to be a ML estimator of F under the model (see
Appendix 1a). This result is convenient, since a useful way
to evaluate the matrix logarithm function of the matrix
P21F# (if defined) is via diagonalization (see Fig. 1). The
symmetry of both F# and P implies that their product is
always diagonalizable and will have real eigenvalues
(e.g., Keilson, 1979). Should any of these eigenvalues be
negative (e.g., with real data), this implies an infinite
distance when the distance assessment is considered in
a ML framework (i.e., infinity would be the ML esti-
mate of the distance).

These distances are consistent (i.e., become exactly
correct as sequence lengths go to infinity) and so aditive
in expectation on a tree, provided all sites have the
same rate of substitution (i.r.) and the process of
evolution is time-reversible across all paths in the tree.
The most general form of the rate matrix, R, then has
nine parameters and can be written as P21S, where S is
a symmetric matrix of relative rates, and P is the diagonal
matrix of the stationary base compositions of the nucleo-
tide states (Tavaré, 1986). An equivalent parameteriza-
tion of R is SP, for a different but still symmetric rate
matrix S (Tavaré, 1986; Zharkikh, 1994; for a proof see
Appendix 6). Thus P has three free parameters (since
nucleotide proportions must sum to 1), while S has up
to six (since rows of a rate matrix sum to zero), making
a total of nine free parameters in the model.

A special case where Eq. (1) is also exact, but the
model may not be strictly time-reversible, is when the
base composition is equal-frequency [0.25, 0.25, 0.25, 0.25]
(Rodrı́guez et al., 1990). To meet this requirement the R
matrix must have both its rows and its columns sum-
ming to zero; this gives nine free parameters but not
necessarily a time-reversible model (see Waddell and
Steel, 1996, for a counterexample). The restrictive assump-
tion of a molecular clock made by Lanave et al. (1984) and
Rodrı́guez et al. (1990) in deriving Eq. (1) is not necessary
(e.g., Tavaré, 1986; Barry and Hartigan, 1987).

An example of calculating the general time-revers-
ible distance is given in Fig. 1. It considers the diver-
gence matrix between the human and chimp sequences
of Horai et al. (1992) (as edited by the removal of all
sites with insertions or deletions).

Checking the Data

Evidence of nonstationarity in the Horai et al. data
was sought using an exhaustive set of pairwise tests of
base compositions using the X 2 statistic, as imple-

mented in PAUP* 4.0 (Swofford, 1997). The overall
result was nonsignificant (i.e., no evidence of nonstation-
arity), and removal of constant sites did not alter the
result (a precaution against the presence of invariant
sites, i.e., sites unable to vary).

It is also useful to test the expectation that cF is
symmetric (e.g., Tavaré, 1986) and using either a X 2 or
G 2 test statistic is reasonable (Read and Cressie, 1988).
The X 2 test statistic is

o
iÞj

(cF̂i j 2 cFi j
# )2

cFi j
#

,

while the G 2 test uses

o
iÞj

cF̂i j ln 1F̂i j

Fi j
# 2 .

Both test statistics asymptotically have a x2 distribu-
tion with degrees of freedom (d.f.) equal to the number
of entries i Þ j (12) minus the number of estimates
made in F# (6), equalling 6 d.f. For the comparison of
human and chimp sequences, the X 2 and G 2 values are
8.86 (P 5 0.18) and 9.67 (P 5 0.14), respectively (or
6.80 (P 5 0.15) and 6.84 (P 5 0.14) when grouping cells
with expected values of less than 5). Of all such tests
only the comparisons of African apes to orangutan were
significant (P , 0.05), suggesting a change in the substi-
tution process in the orangutan lineage (consistent
with Adachi and Hasegawa’s 1996 findings). While
there is a multiple test problem here, robust Bonferroni
type corrections suggest that the orangutan indeed
violates the model expectations at the 95% level.

A potential problem with this type of test is its lack of
power when a molecular clock is likely, since this too
implies that F is symmetric (see proof in Appendix 1b).
The symmetry of F under a molecular clock is under-
standable as ‘‘the expectation of the same frequency of
evolutionary events in each of two lineages of precisely
the same duration, each evolving by exactly the same
stochastic process.’’ However, the test is not affected by
invariant sites. Thus, overall, most of the data appear
to conform reasonably well to the expectations of a revers-
ible model, with the exception of the orangutan lineage.

RESULTS

The Time-Reversible Distance with Any Distribution
of Rates across Sites

Distances estimated under stationary time-revers-
ible models (with up to nine parameters in their
transition matrices) can be extended to allow for un-
equal rates across sites using the same general ap-
proach used in Steel et al. (1993) and Waddell et al.

400 WADDELL AND STEEL



(1997a) (for the Hadamard conjugation). As explained
below, the extension allows correction for a variety of
site rate distributions, including the commonly used G
and lognormal. Our new distance formula (Waddell,
1995; Swofford et al., 1996; Waddell and Steel, 1996;
and all test versions of PAUP* since 1994) estimating
the expected number of substitutions per site is

di j 5 2trace(PM21[P21F]), (2)

where M 21 is the inverse of the moment generating
function of the distribution of rates across sites (defined
below and see a proof in Appendix 2). The application of
M 21 to P21F (here taken as matrix Z) is defined as

M21(Z) 5 VM21[C]V21, (3)

where V is a matrix containing, as columns, the right
eigenvectors of Z (i.e., ZV 5 VD), V21 is its inverse,
and function M 21 is applied componentwise to the
diagonal entries of the diagonal matrix C of the
associated eigenvalues of Z. As with the time-reversible
i.r. model, we symmetrize F̂ to give F# when dealing
with sampled data.

The function M[x] is defined as the expectation,
M[x] 5 E[eljx ], the moment generating function of the
statistical distribution the lj site rates (Table 2 of
Waddell et al., 1997a, gives relevant examples; see also
Steel et al., 1993). Note that

M [x] <
1

c o
i51

c

elix,

the average value of the elix over the sites (where c is
the sequence length). Here, the argument of M will
always be #0 (rather than positive as in most statisti-
cal applications). Consequently, function M will always
be defined in our applications and will lie in the range
from 0 to 1. M 21 denotes the left functional inverse (the
standard inverse) of M (i.e., M 21[M[x]] 5 x), which
always exists since M[x] is a monotone increasing
function (again see Waddell et al., 1997a, for full
details). In real applications we do not know the
function M exactly for any given sequence, so its form is
inferred with an ML method that compares more than
two sequences at a time, as discussed later.

It is proven that any distance based on only the
observed dissimilarity (e.g., that of Tajima-Nei; see
Swofford et al., 1996) and assuming identical site rates
will (asymptotically as c = `) always underestimate
the true distance if there is any site-to-site rate varia-
tion (see Waddell and Steel, 1996; Appendix 3).

Due to sampling error when F is estimated from a
finite number of sites, the eigenvalues of P 5 (-P21F#)
(which are expected to lie in the range [0, 1]), may be
negative, making M 21 undefined (basically the dis-

tance appears too large or infinite given the expecta-
tions of the model). This is a commonly encountered
problem with all model-based distance transforma-
tions, which may also be caused by nonstationarity of
base composition (Waddell, 1995).

In cases where an eigenvalue of F# is negative, a
useful rule of thumb in estimating phylogenetic relation-
ships is set all undefined distances to twice the value of
the largest defined distance from the distance matrix of
species being compared. This is justified since the
largest distance (path) on a tree can never be more than
twice the size of the second largest value (Waddell,
1995). Given more information about the tree, it may
also be possible to refine the expected range for inappli-
cable distance estimates. The use of reduced bias
estimators based on Taylor series-like approximations
(e.g., Tajima, 1993) does not appear feasible as the
eigenvalues do not have a simple sampling distribu-
tion.

Our general approach also provides a quick way of
calculating the transition matrix, P, along any edge or
path moving down a tree (from root to tips) when rates
at sites vary and R is given (e.g., when modeling
sequence evolution). Let t be equal to the total expected
number of substitutions on an edge or along a path,
while R is scaled so that the positive entries of PR sum
to 1; then

P 5 M [Rt]. (4)

Under reversibility the relation F 5 PtPP (e.g., see
Barry and Hartigan, 1987) then allows us to quickly
calculate the divergence matrix (F) given any distribu-
tion of rates across sites (later this is used to calculate
iterated pairwise ML distances). As with Eqs. (2) and
(3), it is assumed sites evolve independently. A proof of
the last equation is given in Appendix 3. It is useful to
note that if R defines a time-reversible process it can
always be diagonalized and has real eigenvalues (Keil-
son, 1979, section 3.2). For convenience we will label
the eigenvalues of Rt as entries jii of the diagonal
matrix J (e.g., Figs. 1 and 2).

Specifically, the moment-generating functions, M,
are for standardized distributions (e.g., Stuart and Ord,
1987, p. 192), where the mean of the underlying
distribution has been set to 1 (i.e., El[l] 5 1), so that
inferred distances are recovered as the expected num-
ber of substitutions per site and not some other mul-
tiple of this number (e.g., Golding, 1983; Jin and Nei,
1989; Steel et al., 1993). Two distributions are particu-
larly useful because they both have closed forms for
both M and M 21. The first of these is for the much used
gamma (G) distribution (e.g., Golding, 1983; Jin and
Nei, 1990; Steel et al., 1993), where M[x] 5 ((k 2 x)/
k)2k, while M 21[x] 5 k(1 2 x21/k), where k is the shape
parameter. When k = y, the G distribution tends to the
delta distribution (i.e., identical rates), and M tends to
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the ln function. When k decreases, the distribution
assumes a skewed normal, then exponential shape (at
k 5 1); for k , 1 the distribution becomes ever more
L-shaped (e.g., see Golding, 1983; Jin and Nei, 1990;
Swofford et al., 1996).

The second distribution (Waddell, 1995; Waddell et
al., 1997a) is the inverse Gaussian distribution, which
is shaped more like the lognormal distribution (intro-
duced with genetic distances by Olsen, 1987). For the
inverse Gaussian, M[x] 5 exp (d51 2 [1 2 (2x/d )]0.56),

FIG. 1. The steps in calculating the time-reversible distance [Eq. (1)]. The observed divergence matrix cF̂ (where c is the sequence length)
is for the comparison of human and chimp mtDNA sequences (Horai et al., 1992). Starting with the observed matrix of aligned
paired-nucleotide frequencies (cF̂) we estimate Rt and other quantities. Entries in R̂t are inferred relative rates, whereas entries in P̂R̂t are
estimated numbers of each type of substitution divided by the sequence length. The observed (Hamming) distance from F̂ is

o
iÞj

Fi j 5 (8 1 55 1 · · · 1 1)/4898 5 0.0833,

whereas the distance for the data corrected under the i.r. time reversible model is (6.3 1 69.3 1 . . . 1 0.5)/4898 5 0.0915. The matrix cP̂R̂t
(which is analogous to the F̂ matrix with corrections for multiple hits) shows the estimated number of transversions almost unchanged. In
contrast, the number of multiple hits is estimated as [(69.3 1 69.3)/(55 1 73) 2 1] 3 100% 5 8.3% among the A & G transitions or
[(145.3 1 145.3)/(117 1 144) 2 1] 3 100% 5 11.3% among the more numerous C & T transitions. This in turn has increased the overall
transition to transversion ratio from 20.47 for the observed data to 22.50 for the i.r. time-reversible model corrected data, an increase of 9.9%.
Note: A worked example in Rodrı́guez et al. (1990) does not symmetrize F, and has serious round off errors, making it unsuitable for checking
computations.
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while M 21[x] 5 0.5d(1 2 51 2 (ln[x]/d )62 ). Here d is the
shape parameter, and the coefficient of variation (i.e.,
ratio of s.d. to mean) for site rates is d 0.5. Here, as d =
`, M tends to the natural logarithm function. As d
decreases below 1, the rates across sites follow a highly
skewed lognormal-like distribution (see Fig. 1, Waddell
et al., 1997a). Apart from the notable shape difference,
the inverse Gaussian distribution tends to have a
flatter tail than the G, inferring more of the most
rapidly evolving sites (e.g., the sites evolving more than
40 times the mean rate). Distance formulas assuming
flat-tailed distributions will thus often infer more mul-
tiple hits, larger distances, and accordingly often higher
ti/tv ratios (see Waddell et al., 1997a).

Constant Site Removal and Invariant
Sites Distributions

Not accounting for invariant (here equals invariable)
sites leads to distortions of estimated distances (Shoe-
maker and Fitch, 1989), reduced statistical efficiency
(Hasegawa and Fujiwara, 1993), and sometimes incon-

sistency of tree selection (Waddell, 1995; Lockhart et
al., 1996). Failure to identify and account for the
distinct base composition of invariant sites relative to
the base composition of variable sites can, in itself, also
lead to inconsistency (Waddell, 1995). Invariant sites
are often ambiguously identified, so they cannot be
directly edited out of the sequences.An effective alterna-
tive modification of the F matrices is possible, given
estimates of the overall proportion of invariant sites
( pinv) and the proportions of the invariant base (in the
diagonal matrix Pinv). So we arrive at Fvar 5 (F 2 pinv
Pinv)/(1 2 pinv), where Fvar is the F matrix of just the
variable sites (Waddell, 1995).

There are a number of ways to specify Pinv, the base
composition of the invariant sites: (1) The invariant
sites will have base composition equal in the four bases,
i.e., pinv 5 [0.25, 0.25, 0.25, 0.25]. (2) The invariant
sites reflect the base composition of the sequence as a
whole. This can be estimated in two ways, as either
pinv 5 p (for a particular F matrix) or, more logically, as
the average base composition across all sequences. (3)
Often Pinv is better reflected in the base composition of
the sites which are unvaried or constant (e.g., as tested
on the Horai data in the legend to Fig. 2 and usually
most sensibly estimated from the sites constant across
all sequences). (4) Direct optimization of entries in pinv
by ML or some other criteria (i.e., separately optimize
the base compositions of the varied and unvaried sites).
This last option is most computationally intensive, but
desirable (Waddell, 1995). The first three ways of
making these modifications have been implemented in
PAUP 4.0 (Swofford, 1997).

An interesting feature is that the more the base
compositions of the varied sites and the unvaried sites
differ, often the more pronounced the amount of correc-
tion made when pinv is inaccurately estimated (i.e.,
overestimation of distances if the model were to hold
exactly). To avoid this we tend to prefer estimating pinv
as the base composition of the sites which are constant
across all sequences (via method 3 or 4).

The term ‘‘constant site removal’’ (CSR) modification
for these modification seems appropriate, since they
can also be invoked to give more robust distance
estimates when the site to site rate variation follows a
continuous distribution (see examples in Waddell, 1995).
Three CSR methods are used later in data analysis:
CSR(F) (a form of method 2), where the base composi-
tion of the invariant sites are estimated separately as p
for each pairwise F matrix; CSR(all sites) (again a
variant of method 2), where pinv is estimated as the
unweighted averaged across all sequences; and CSR-
(cons.) (method 3), where pinv is estimated from the
sites constant across all taxa.

The various CSR modifications are easily made be-
fore forming Fvar from the observed paired nucleotide
counts. However, with pinv estimated at p for each pair
of sequences, the modification to the transformation of

FIG. 2. The effect of different forms of the distribution of rates
across sites on the transformed distances. (a) An inverse Gaussian
(with shape parameter d 5 0.213), (b) G (with shape k 5 0.351), (c)
CSR(F), and (d) CSR(cons) are invariant sites/variable sites distribu-
tions. Averaging over all 6 hominoid mtDNA sequences in Horai et al.
(1992) gives p 5 [0.30, 0.31, 0.13, 0.26], whereas just the unvaried
sites have base composition pc 5 [0.32, 0.28, 0.15, 0.25], which is
significantly different (by a X2 statistic test). For both invariant sites
models, the estimated rate matrix is for just the variable sites.
Likewise, d, measured over just the variable sites is shown first and
then d averaged over all sites [i.e., multiplied by (1 2 pinv)] is given in
brackets.
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the eigenvalues can be made by replacing ln [x] with
ln [(x 2 pinv)/(1 2 pinv)] or, more generally, M 21[(x 2
pinv)/(1 2 pinv)] (Waddell et al., 1997a). Thus, either
way, it is straightforward to allow for mixed variable/
invariable site distributions (e.g., Waddell, 1995; Gu et al.,
1995; Waddell and Penny, 1996; Waddell et al., 1997a).

Note that like other forms of our distance, the CSR
distance is a pairwise distance ML estimator under the
nine-parameter reversible model, given pinv, Pinv, and
M 21. Since any symmetrized F matrix with all positive
eigenvalues will yield a valid R matrix, it is not possible
to simultaneously estimate pinv, Pinv, or M 21. All these
‘‘site rate’’ parameters may be estimated using an
appropriate ML model applied to three or more se-
quences. Waddell (1995) uses eight different methods to
estimate some of these parameters. ML or a parsimony-
based approximation is often best (e.g., easiest to
implement and robust) if all parameters are to be
estimated simultaneously, while generalized least-
squares fitting of the distances to a tree has attractions
also (Waddell, 1995; Waddell et al., 1997b).

ML Estimators and Iterated ML Distances

Simulations and analytic calculations with Eq. (2)
show it to yield an ML estimate of the true distance
given just F̂ and a distribution of rates across sites. By
ML estimate, we mean the distance which will mini-
mize the G2 statistic between F and F̂ when all entries
in R (i.e., both components of R 5 P21S) are simulta-
neously optimized (a formal proof is given in Waddell,
1997). ML estimators often have the desirable property
that as c becomes large, they have the minimum
possible sampling variance of all estimators for that
model. Consistent with this, under models known to
have ML distance estimators (e.g., those of Jukes and
Cantor, 1969; kimura, 1980, 1981, as shown in Saitou,
1990), Eq. (5) (see below) returns identical variance
estimates to the delta method variances of these estima-
tors (Waddell, 1997). In our simulations and bootstrap
analyses, Eq. (2) often has less variance than distance
estimators which are now known not to be ML estima-
tors (Waddell, 1995). These include the three-param-
eter distance of Tamura (1992) and the six-parameter
distance of Tamura and Nei (1993) (see Zharkikh,
1994). In this sense Eq. (2) is often a better distance to
use for estimating evolutionary trees than these estima-
tors, especially when distances become larger and/or
base composition unequal.

It is also possible to use Eq. (4) to predict what the
expected divergence matrix is, given any time-revers-
ible model and any distribution of rates across sites.
That is, the expected divergence matrix is just Fexp 5
PPexp 5 PM[Rt] (here R is linearly scaled so that all
off-diagonal entries sum to 1, making variable t the
distance in expected number of substitutions). This
allows the likelihood of the observed pairwise data, cF̂,
to be calculated and then optimized. Felsenstein (1993)

uses iterated ML distances with the more specific i.r.
Kimura 2P (1980) and Felsenstein (1984) distances (in
the program DNADIST). Note that with the new equa-
tions, all parameters relating to site rates must be
supplied by the user from elsewhere, as explained
earlier. If you wish to add invariant sites with a base
composition distinct from the variable sites, then Fexp
becomes Fexp(1 2 pinv) 1 pinvPinv, and M with its associ-
ated shape parameters, pinv, and Pinv must all be
supplied from elsewhere.

This approach will always give lower sampling errors
of the distance (about the sample mean) than those
made by Eq. (2). It is often reasonable to assume a fully
homogeneous and reversible model. In this circum-
stance, if the unknown parameters in R can be esti-
mated by a statistically efficient method (such as ML
applied to a set of sequences) and then fixed for all
iterated pairwise distance estimates, then not only the
sampling errors but the absolute error about the true
value will decrease relative to Eq. (2). However, if there
are factors such as a truly variable ti/tv ratio, then even
if these violate the reversible model assumption, use of
Eq. (2) may be more robust (i.e., give smaller errors
about the true distances). Equation (2) will also allow
detection of violations (as in Fig. 3 below), while
homogenization of R will prevent their identification.

Reducing the number of parameters in R will also
reduce sampling variance. Further, if the differences in
the parameters homogenized are small enough (e.g.,
when entries are statistically indistinguishable), and
the reversibility assumptions hold, then this will re-
duce total error not just about the sample mean but
about the true distance values also. Should it be
decided to use iterated ML distances based on, say, the
Tamura (1992) model, then again we have a choice: (I)
to homogenize R for all distance estimates; (II) to
estimate the Tamura (1992) form of R independently
for each pair of species. The former can be done with ML
(Felsenstein, 1982) based on more than three species at a
time, while the latter can be done using the previous
equations for Fexp for each pair of sequences separately.

Thus, the user needs to decide, first, whether to fix R
for all comparisons (and reduce sampling error) or to
estimate it via iterated ML for each comparison (to
improve robustness), and second, whether to use all
possible free parameters (for robustness) or to go for a
reasonable submodel to reduce sampling error. A sub-
family of iterated ML distances based on Eq. (4) is
implemented in PAUP 4.0 (Swofford, 1997), applicable
when R is fixed, while a non-ML solution (Lewis and
Swofford, 1997) is used when R has less than its full
generality and is not fixed for all comparisons. (How-
ever, it is preferable, regarding sampling errors, to use
iterated pairwise ML instead of other solutions, as
already mentioned here and in Waddell, 1997.) For
related issues of choosing a suitable distance, see
Waddell (1997) and Waddell et al. (1997b).
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FIG. 3. (a) Transition versus transversions ratios and (b) total distance with rates across sites time-reversible distances versus the
observed (Hamming) distance (dobs). The pair of sequences being compared is indicated in rank order by the symbols c (chimpanzee), p (pygmy
chimp), h (human), g (gorilla), o (orangutan), and s (siamang). Using simpler distances, such as that of Kimura (2ST), yields even lower ti/tv
ratios than the i.r. general time-reversible used in (a). The dotted line in (b) shows the expected distance if there was no correction for multiple
hits being made. The addition of unequal rates across sites has more than tripled the number of ‘‘corrections’’ being made, relative to the
standard i.r. time-reversible distances.

405UNEQUAL SITE RATE GTR DISTANCES



A Computational Example

Application of Eq. (2) to the mtDNA sequences of
Horai et al. (1992) allows correction for an unequal
distribution of rates across sites, a very high transition
to transversion ratio, and a skewed base composition
(see legend to Fig. 2) of mammalian mtDNA. To illus-
trate some consequences of using Eq. (2) and different
distributions of rates across sites, the same human–
chimp comparison as described in the legend to Fig. 1 is
used. The shape parameter for each distribution is
calculated with maximum likelihood (ML) tree estima-
tion on sequences allowing for a distribution of rates
across sites, using the ML methods and models of
Waddell and Penny (1996) (for a proof of such site
likelihood calculations see Steel et al., 1993; Yang,
1993; or Waddell et al., 1997a). Using the generalized
Kimura 3ST model is both computationally convenient
and unlikely to result in overestimates of the spread of
site rates (Waddell, 1995).

With the edited Horai et al. (1992) data, the ML
sequence based method estimated the shape parameter
of the inverse Gaussian distribution as d 5 0.213. The
optimal fit of data to model, measured by the likelihood
ratio, G 2 (Ritland and Clegg, 1987; Stuart and Ord,
1991, p. 1160) was 334.8 (P. J. Waddell, unpublished).
For the G distribution, k was estimated to be 0.351 and
G 2 was 303.2, while an invariant sites/i.r. distribution
yielded pinv 5 0.592 and the best fit of G 2 at 279.4
(Waddell and Penny, 1996). Allowing a mixture of
invariant sites with either a G or an inverse Gaussian
distribution did not further improve the fit under the
Kimura 3P model (Waddell and Penny, 1996; Waddell,
1995). [However, it does when using the same data but
more general models; e.g., allowing unequal base com-
position (P. J. Waddell, unpublished data).]

As Fig. 2 and Table 1 show, taking a distribution of
rates across sites into account increases substantially
the estimated distance between these sequences. Impor-
tantly, the inferred distance is dependent upon the
assumed distribution, here being minimal with the
invariant sites models and largest with the inverse
Gaussian distribution. As the distance between se-

quences increases, the importance of the site rate
distribution becomes more pronounced (see later, Fig. 3).

A partial solution to the uncertainty as to which
distribution to use is to ignore those models which have
a substantially lower likelihood than the optimal model.
Here, this would suggest ignoring the G, inverse Gauss-
ian, and i.r. estimates. This solution is only partial
since our optimal model may still not be the true model,
which might suggest a distinct distribution of site rates
and could therefore infer quite different distances
again. Additionally, the model being used to measure
likelihoods may be critically deficient in some way and
consequently may not be accurately measuring the
rank of models attributable to the distribution of rates
over sites. Third, we implicitly assume the relative
rates of sites are fixed, but they are unlikely to be (e.g.,
a covarion model like that of Fitch and Markowitz,
1970, seems more likely; Waddell and Penny, 1997a), so
all fixed site rate estimates could be severely mislead-
ing at larger distances. Different forms of site rate
distribution also give distinct ratios of transitions to
transversions. In this case the largest ratio for the
human–chimp comparison was with the inverse Gauss-
ian distribution, consistent with this distribution hav-
ing the flattest tail (described later).

Two distinct invariant sites models are evaluated in
Fig. 2. While both give similar estimates of d, the
matrix cPRt shows this is partly coincidence. This
second model is suggesting there is a smaller propor-
tion of variable sites with A or G than there is with C or
T. This in turn leads to more corrections of AG transi-
tions and fewer for CT transitions, but coincidentally
these two effects nearly cancel (they do not always, as
we see later in Fig. 3). We do not show a mixed
invariant sites/continuous distribution (such as CSR
with G), since for these data such a mixture did not
improve the likelihood of the models considered (Wad-
dell and Penny, 1996). However, the properties of such
corrections (e.g., inferred distance or ti/tv ratio) are
studied and tend to be near an average of their compo-
nent parts (Waddell, 1995, and unpublished).

Overall then, the type of distribution of rates across
sites is an important parameter for gaining both more
precise estimates of absolute distances (and hence
exact edge lengths on trees) and ti/tv ratios. While here
the invariant sites model fits the data better than
either a G distribution or an inverse Gaussian distribu-
tion, this is not always the case (Waddell, 1995; Waddell
et al., 1997a).

A Delta Method Approximation of the Variance

The previous sections have dealt with estimating the
expected distance between a pair of sequences, but the
variances of these estimates are also important. Barry
and Hartigan (1987) derive a delta method approxima-
tion to the variance of the i.r. time-reversible distance.
Extending this approach to allow unequal rates across

TABLE 1

Distances and ti/tv Estimates with Different
Distributions of Rates across Sites

Rate
distribution dhc

Increase
over i.r. ti/tv

Increase
observed

Ratio
tr(AG)/
tr(CT)

Percentage
of multiple
hits in tv’s

i.r. 0.0915 — 22.50 9.9% 0.477 0.4%
Inverse 0.1327 45.0% 32.34 58.0% 0.435 2.6%
Gaussian

G 0.1221 33.4% 29.90 46.1% 0.437 1.8%
CSR(F) 0.1090* 19.1% 26.77 30.8% 0.448 1.2%
CSR(cons.) 0.1087* 18.7% 26.68 30.3% 0.488 1.2%
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sites [i.e., Eq. (2)] gives the following result (proven in
Appendix 4),

Var [d̂] <
1

c 3ok51

4

pk 1Rkk 2 o
i51

4

piRii22

1 o
k51

4

pk5o
l51

4

Pkl1Gkl 2 o
j

Pk jGkj226 4 1 O (c22), (5)

where (Gkl) are elements of the matrix

G 5 2o
r51

`

ar o
s50

r21

Bs (Bt )r212s, B 5 I 2 P,

where Bt is the transpose of B, while P 5 P21F#, R 5
M 21[P] (replaced by their estimates when working
from a finite sample) and c is the sequence length.
Simulations (see Waddell et al., 1997b) confirm the
accuracy and consistency of Eq. (5).

The term in matrix G which changes given different
assumed distributions of rates across sites is ar. This
term is given by the coefficients of the Taylor series
expansion of M 21[1 2 x] 5 2Si aix i. For example, in
the case of the i.r. distribution, ar is the coefficient of xr

in 2ln (1 2 x), and so ar 5 1/r (i.e., a1 5 1, a2 5 1/2,
a3 5 1/3, . . .). For the G distribution with shape param-
eter k the series becomes, ar 5 [(k 1 1) (2k 1
1) . . . ((r 2 1)k 1 1)]/r!kr21), for example, with shape
parameter k 5 0.351, a1 5 1/(1 3 0.3510) 5 1; a2 5
(0.351 1 1)/(2!(0.3511)) 5 1.92; a3 5 [(0.351 1 1)
(0.702 1 1)]/(3!(0.3512)) 5 3.11. As k goes to infinity,
this series converges to that for the i.r. distribution, as
expected.

For the inverse Gaussian distribution,

ar 5
1

r
1

1

2d o
m51

r21 1

m(r 2 m)
,

as derived in Appendix 5. As an example, with shape
parameter d 5 0.213, this gives

a1 5 1 1 1/0.426 3 o
m51

l21 1

m (1 2 m)
5 1 1 0

(since the summation does not take effect) 5 1;

a2 5 1/2 1 1/0.426 3 o
m51

221 1

m(2 2 m)

5 1/2 1 1/0.426 3 (1) 5 2.85;

a3 5 1/3 1 1/0.426 3 (1/2 1 1/2) 5 2.68; a4 5 1/4 1
(1/3 1 1/4 1 1/3)/0.426 5 0.250 1 1.49 5 2.40, etc.

If we look at the terms for this distribution, there are
two parts. The first part, i.e., 1/r, is the same as the
standard i.r. log transform, while the second part can be
thought of as extra uncertainty due to unequal rates.
As d = `, this second term goes to zero, and the
variance converges to that of the i.r. model, as expected.

With the CSR distances, the easiest way to make the
computation of this variance is to redefine P, R, and P
as PCSR, RCSR, and PCSR, i.e., their values after the
removal of constant sites. For the mixed invariant
sites/G distribution (Gu et al., 1995; Waddell, 1995;
Waddell and Penny, 1996; Waddell et al., 1997a) or a
mixed invariant sites/inverse Gaussian distribution
(Waddell, 1995; Waddell et al., 1997a) do as for the CSR
distances, except apply the appropriate power series for
the term ar in Eq. (5).

Application of Eq. (5) shows that the major cost in
calculating Var [d̂] is the evaluation of matrix G. For
example, in the HC comparison, G calculated with r up
to 4 is accurate to the third decimal place due to a
fourfold rate of decrease of the products involving
matrix B. However, large distance comparisons, e.g., to
siamang, require more (here 11) terms for the same
accuracy. Premature truncation biases the result of Eq.
(5) toward underestimation of the variance.

The increase of the standard error with unequal
rates across sites can be substantial. With the i.r. time
reversible distance the estimated HC distance has a
standard error of 0.0048, whereas the CSR(F) distribu-
tion of site rates ( pinv 5 0.592) gives a SE of 0.0066, a
slight decrease in accuracy. Assuming the G (k 5 0.351)
increases the inferred standard error to 0.00837, the
inverse Gaussian gives 0.00915. In contrast, the sim-
pler i.r. Kimura (1980) 2ST (SE 5 0.0047) or Jukes–
Cantor (1969) (SE 5 0.0044) distances give only a
slight reduction in stochastic error. Thus, the distribu-
tion of rates across sites is causing a far greater
increase in sampling error than going from an i.r.
one-parameter to an i.r. nine-parameter model. This is
should be offset by a proportionately greater reduction
in bias (about the true distance) when more general
distance estimates, that allow unequal rates across
sites are used.

The decrease in the sampling accuracy of distances
estimated taking unequal site rates into account often
translates to decreased bootstrap support for many
nodes in a tree. Thus, many real data sets which have
been estimated under i.r. assumptions and look highly
informative need to be reevaluated under more realis-
tic assumptions. This can lead to both a collapse of
support for widely accepted results and the emergence
of good support for new hypotheses (e.g., Waddell, 1995;
Lockhart et al., 1996). Note that fixing all other input,
Eq. (5) returns a monotonically increasing variance the
more unequal site rates are. Thus it follows that site
rate equality, as well as the form of site rate distribu-

407UNEQUAL SITE RATE GTR DISTANCES



tion, is an important criterion in assessing sequence
suitability for phylogenetic analysis.

Last, as is generally the case with delta method
approximations of the variance of a distance, Eq. (5)
assumes that the form of the distribution, the shape
parameter(s), and the base composition of invariant
sites are known. The variability of distances, due to
estimation of these parameters, appears best taken
into account by a bootstrapping procedure which in-
cludes reestimation of the shape parameter(s) for each
bootstrap sample.

Applying Time-Reversible Transformations to mtDNA
from Apes and Humans

The first application is to estimate the ti/tv ratio
between pairs of taxa (Fig. 3) from the six-taxon 5-kb
hominoid mtDNA of Horai et al. (1992). When unequal
rates across sites are allowed for, the inferred ratio
increases substantially over either that observed or
that estimated by i.r. time-reversible distances. When
an inverse Gaussian distribution is assumed, the in-
crease is from 20 to about 100% for the largest dis-
tances (comparisons to siamang).

The data in Fig. 3 show an anomalously high ti/tv
ratio for the HC and HP comparisons and also less
strikingly for the HG comparison (taxa abbreviations
as given in Fig. 3). This suggests an increased ti/tv ratio
in the human lineage, which is all the more striking as
it goes against the trend of decreasing ti/tv ratio with
increasing distance. This observation is consistent with
the claims of Adachi and Hasegawa (1996). They ar-
rived at their conclusion using an ML model allowing
unequal ti/tv ratios in different edges of the tree. They
also show a way of comparing observed distances with
predicted observed distances based on the ML model.
This is a useful technique also. Given the present lack
of programs to implement their methods, our distance
methods offer a useful alternative. Either approach can
be extended to break the distances up not just into ti
versus tv, but into all six independent categories in
cĤR̂t (as shown in Fig. 1).

With regard to the overall trend of decreasing ti/tv
ratio, we doubt this is really as strong as it appears;
rather it is most likely an artifact of these estimators in
relation to the true model of evolution. That this trend
is so pronounced, yet so consistent among all the
assumed distributions of rates across sites, suggests
that in general it may be very difficult to obtain
accurate estimates of the ti/tv transition rate across all
sites when taxa are even moderately diverged. Such a
plot may give an indication of how accurately a distance
transformation is correcting for multiple hits among
the transitions. Note how the inverse Gaussian ti/tv
ratios generally tend to be larger than those from the G.
We expect this is due to a ‘‘flat-tails effect’’ (Waddell et
al., 1997a).

The flat-tails effect states that some distributions

(e.g., the ‘‘F distribution’’ relative to the lognormal)
predict many more sites with the highest rates, even
though the bulk of the sites in the two distributions
have similar rates. This results in the more flat-tailed
distribution predicting more multiple and ‘‘multiple–
multiple’’ hits. Accordingly, the F distribution gives a
larger correction factor for things like ti/tv ratio rela-
tive to the less flat-tailed distribution, even though
overall fit may be similar.

The methods of constant site removal show another
trend described in Waddell et al. (1997). Here, as the
removal of constant sites brings the ‘‘infinite distance’’
(i.e., one or more of the eigenvalues tend to zero) closer
(i.e., it approaches an asymptote), total distance and
relative rates and ratios can experience a great in-
crease, with relatively small changes in dobs. The effect
here is not dramatic, but it is expected to become more
pronounced for ‘‘deeper’’ comparisons, e.g., human to
monkey sequences.

There are way to alleviate, but not eliminate, the
downward bias in estimating ratios (due no doubt to an
underestimation of the total number of transitions).
One is further editing of the data; e.g., separating out
the three codon positions and the structural RNA
coding regions. However, a plot like Fig. 3a using just
third positions, while much less pronounced, still sug-
gests a downward trend of the ratoi for larger distances
(P. J. Waddell, unpublished). Another possibility, men-
tioned earlier, is that the shape parameters of the
various distributions are underestimated. However,
replotting the figure with k as low as 0.2 or d as low as
0.15 does not alter this trend. While careful data
editing can reduce the bias shown, our purpose here is
mainly to illustrate just how substantial this effect can
be among taxa diverged for less than 20 million years.
The implication is that many estimates of ti/tv ratios at
older times may be of dubious accuracy.

Figure 3b shows that all of these transformations
assuming unequal rates across sites are making increas-
ingly large corrections for multiple hits compared to the
i.r. methods, as the observed distance becomes larger
(as expected from the proof in Appendix 3). There is also
a noticeable difference between the different distribu-
tions. While the removal of constant sites makes a
lesser difference initially, CSR(all sites) and CSR(F)
transformations show signs of becoming suddenly larger
as dobs increases.

A simple way to infer the divergence time of a group
(e.g., human–chimpanzee) is the ratio of a distance
going through the node of interest (e.g., human–pygmy
chimp) to a distance going through a node of more
reliably known age (e.g., chimpanzee–orangutan). For
the six taxa in this study, all such ratios are shown for
all possible pairs of distances (Fig. 4a) estimated with
the various distances. This figure shows the substan-
tial, and closely agreeing, drop in divergence time
estimates achieved by all the methods modeling a
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FIG. 4. (a) Estimates of divergence times using time-reversible distances counting all types of substitution and (b) just transversional
changes. In (a) all possible pairs of distances (for the more recent and the older divergence) are shown (x axis is arbitrary). The distance used
corresponding to the more recent divergence (e.g., cp) is shown above the block of four values, and the denominator for this comparison (e.g.,
the distance co, po, ho, or go) is shown below the first set, with the same order in all instances. (b) Follows the same pattern of pairs of
distances, but uses only the transversional changes. The distance transformations are the same as (a), except for the mapping down to
purines/pyrimidines (AG versus CT). The 2-state Cavender G distance is also shown. The divergence time is calibrated by assuming the
orangutan–African apes split occurred 16 million years ago for the reasons outlined in Waddell and Penny (1996).
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distribution of rates across sites. The dates fluctuate
little with respect to the distance to orangutan used
(due no doubt to a high correlation of paths through the
tree), slightly more with respect to the use of chimpan-
zee or pygmy chimp sequence, but substantially when
there is a choice of distance between human–gorilla
and chimp–gorilla. Clearly there can be expected to be
even greater fluctuations with choice of species when
estimating older divergence times.

The ages on the right y axis are made assuming a
16-million-year-old divergence of orangutans from Afri-
can apes. This is a date preferred due to biogeographic
and fossil evidence as interpreted in Waddell and
Penny (1996). The ML divergence dates in Waddell and
Penny (1996), made under a Kimura 3P model with
unequal rates across sites, fall between the i.r. and
unequal rates times shown in Fig. 4a (excluding in-
stances with the hg distance). Otherwise, the diver-
gence times reported here tend to be proportionately
older than those based on other recent ML analyses
(e.g., Adachi and Hasegawa, 1996) for two main rea-
sons: Their data were edited into a class of sites
(fourfold degenerate) which had very similar substitu-
tion properties; ML has some robustness (e.g., Felsen-
stein and Kuhner, 1994) to pick up extra multiple hits
due to its inherent ability to infer probable states at
internal nodes.

Given the appearance of at least close to a molecular
clock for these data (Horai et al., 1992; Adachi and
Hasegawa, 1994; Waddell and Penny, 1996; although
see Adachi and Hasegawa, 1996), it is surprising that
the divergence times estimates from just the transver-
sion substitutions are so different (Fig. 4b). Since the
model used to correct the transversion distance makes
little difference to these times, they are not easily as
systematically biased. Taken at face value they indi-
cate either incredibly recent divergence times for these
taxa (especially humans from chimps) or a very ancient
divergence of orangutan. Either interpretation runs
into conflict with the fossil evidence. While there may
be an accelerated rate of transversion in the orangutan
lineage (e.g., Horai et al., 1995; Adachi and Hasegawa,
1996), this does not explain why the human–chimp
versus human–gorilla dates are so distinct.

Importantly, the patterns reported here are still
apparent to some degree in the analysis of the complete
mtDNA sequences of Horai et al. (1995), suggesting
that they are not just artifacts due to data editing or
sequence length. The nature of this apparent conflict is
considered further elsewhere (Waddell, in prepara-
tion). Indeed, testing whether the more conservative
changes agree with the picture painted by all sites is a
general and useful way of testing the coherency of a
phylogenetic model. This includes tests (e.g., by likeli-
hood ratio) of the relative lengths of edges in the trees
produced by each category of site or change (Waddell,
1995). In summary, the main point of this section is to

illustrate the ways these new distances may be used,
especially so that they will highlight features which
appear anomalous (irrespective of the ultimate cause).

A Quick ‘‘Test’’ of the Reversibility of a Specified
Rate Matrix

Often rate matrices are derived de novo without
being written explicitly as P21S or the equivalent form
SP (e.g., see Zharkikh, 1994, for a table of reversible
and nonreversible rate matrices), so it is handy to have
a quick way of checking the reversibility property. In
this case, a simple ‘‘test’’ (or diagnosis) is that

R 5 3
* A B C

D * E F

G H * I

J K L *
4

(All nondiagonal elements . 0 and row sums 5 0),
defines a time reversible model if, and only if, the
following three conditions hold:

(E1) AGE 5 BDH, (6)

(E2) AJF 5 CDK, (7)

(E3) EKI 5 FHL. (8)

A proof of this test is given in Appendix 6.

DISCUSSION

Choosing a distance with which to estimate diver-
gence times is not always straightforward. The only
pairwise distance estimator which is linearly related to
time under a stationary i.r. 12-parameter model is the
LogDet (Steel, 1994; Lockhart et al., 1994; Swofford et
al., 1996) or paralinear distance (Lake, 1994). This
makes it suitable for divergence time estimates using
phylogenetic trees, given these conditions, plus a mo-
lecular clock and stationary base frequencies (Waddell,
1995; Swofford et al., 1996). Importantly, though, if all
sequences have a base composition close to equal
frequency, then Eq. (1) may well return a distance just
as additive (in practice) as any under a nonreversible
stationary i.r. model, with the added advantage that
Eq. (2) can be used to accommodate a variety of
distributions of rates across sites.

Of course, as base composition becomes unequal, but
stationary, with site rates i.r., the LogDet will become
more useful for estimating relative divergence times. If,
in addition, site rates are unequal, the CSR-LogDet
(Waddell, 1995; see also Swofford et al., 1996; Swofford,
1997) may become the best measure of relative diver-
gence times using just pairwise distances (see Waddell,
1995, for examples). A major problem with nonstation-
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arity is that it becomes necessary to make a largely
subjective judgment of how severely the molecular
clock is violated and how much the LogDet distance
deviates from giving an unweighted estimate of the
number of substitutions per site.

An additional use of the distance in Eq. (2) is for
obtaining a first approximation to the length of edges
on a tree when performing ML with unequal rates
across sites (e.g., Yang, 1993; Waddell and Penny, 1996;
Swofford, 1997). This could be done by building a tree
with a method such as weighted least-squares (e.g.,
Fitch and Margoliash, 1967) based on these pairwise
distances (e.g., Adachi, 1995; Swofford, 1997). An alter-
native would be to use generalized parsimony (e.g.,
Sankoff, 1975) to estimate the P matrix for each edge in
the tree. Application of the transformation
2tr (P(M 21[P]) to each edge could give a revised
estimate of the length of that edge, better taking into
account multiple hits, prior to the first iteration with
likelihood. This is a more general application of a
method being implemented in PAUP* (Swofford and
Rogers, in preparation; Swofford, 1997), where an
important preparatory step is to assign ambiguous
parsimony changes to their most likely positions; i.e.,
on the longest edges.

All the methods suggested here can easily be ex-
tended to fewer or to more states, e.g., purines versus
pyrmidines (2 states), amino acids (20 states), the first
2 sites of protein codons (16 states or 162 entries in F),
or all 61 nonstop codons. The basic assumptions remain
the same: the process is time-reversible, or the base
composition is equal-frequency, so all matrices have a
double stochastic form. The use of 20 or 61 states removes
much of the local correlation between site substitutions
caused by the genetic code, and for this reason (plus the
reduced likelihood of convergences), such distances may be
preferable with more diverged sequences.

While it is mathematically nearly equivalent to treat
sites that evolve very slowly as invariant, there is an
important biological difference. That is, very slowly
evolving sites will often contain important phylogenetic
information for deep divergences, while invariant sites
cannot (by definition). If the former is true, then there
are times when it is much better to edit the data to
remove the more rapidly evolving sites than to simply
apply rates across sites distance corrections (Waddell,
1995). This ‘‘editing’’ approach reduces both the vari-
ances and biases of estimated distances, as the more
rapidly evolving sites contribute disproportionately
large amounts to both forms of error (for examples of
each factor, see Waddell, 1995). This argument holds in
a similar manner even if the site rate distribution is
continuous (e.g., G or i.G.).

There is a tendency to accept that current models are
adequate, often for the simple reason we like to believe
something is solid and certain. Herein, as in Adachi and
Hasegawa (1996), there is evidence this may not be the

case even with divergences less than 20 mya. While ML
and careful editing of sequences offer hope for more
accurate estimates when the model is violated, we
suggest that plots such as those in Figs. 3 and 4 be
employed to help detect such diases (perhaps with
bootstrapping to show the fluctuations expected due to
sequence length). Since currently available ML pro-
grams do not generally allow detection of altering
substitution rate matrices (nonhomogeneity), pairwise
distance comparisons should be useful for alerting
biologists to such possibilities in their data.

APPENDIX 1

(a) Proof that symmetrizing F̂ gives the ML estimate
of F as F#. Since cF is expected to by symmetric under
the model, cFij 5 cFji. As cF is expected to have a
multinomial distribution (giving binomial marginal
distributions for each entry cFij), the ML estimator of
cFij 1 cFji is c(Fi j 1 F ji ), so it follows that the ML
estimator of Fij or Fji is 1/2 (Fi j 1 F ji), i.e., entry Fi j

# .
This applies jointly for all entries in F# since all
symmetrized pairs are nonoverlapping.

(b) Proof that for any Markov process operating on a
rooted tree obeying a molecular clock, F is symmetric
(without assuming that the root base composition is
necessarily in equilibrium). Under a molecular clock,

F 5 PtPP, and so Ft 5 PtP(Pt )t 5 F, as claimed.

APPENDIX 2: PROOF OF EQ. (2)

We have F 5 El [P exp [Rtl]] 5 PEl [exp [Rtl]] 5
PM [Rt], by the relationship P 5 M [Rt] of Eq. (4).
Thus, Rt 5 M21[P21F], and since di j 5 2tr
(PR)tEl [l], and we are assuming that El [l] 5 1, we
have

di j 5 2tr (PM21[P21F]),

as claimed.

APPENDIX 3: PROOF OF EQ. (4)

First we recall how the domain of the moment-
generating function M is extended so that the function
is defined on matrices. Namely, if M[x] 5 1 1 Sk51

` lkxk,
then for a matrix X,

M [X]: 5 I 1 o
k51

`

lkXk.

We may assume, without loss of generality, that the
rate matrix R is diagonalizable, so that we can write

Rt 5 ADA21.
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Then P 5 El[exp (Rtl)] 5 El[A exp (lD)A21] 5
AEl[exp (lD)]A 21.

Now, exp (lD) is the diagonal matrix with iith entry
exp (lDii); thus El[exp (lD)] 5 M(D), by the above
definition of M(D ). Thus, again invoking this definition,

P 5 AM [D]A21 5 M [ADA21] 5 M [Rt],

APPENDIX 4: DELTA METHOD APPROXIMATION

A delta-method variance is an approximation that
becomes exact as sequences become infinitely long. As a
simple example, the delta-method variance of the ‘‘trans-
version’’ distance d 5 21

2 ln [1–2dobs] is obtained by:
(1) calculating the variance of the term in brackets.

It is a scaled binomial so variance 5 (1–2dobs)(2dobs)/c;
(2) deriving a linear approximation for the effect of

the power function (ln) by measuring the gradient of
the log function at 1–2dobs (equals 1/(1–2dobs) or the first
derivative of the logarithmic function);

(3) scaling the variance by the first derivative
squared;

(4) accommodating the initial multiplication of 21/2
by squaring, yielding Var [d] 5 dobs/52c 3 (1–2d obs)6.

Barry and Hartigan (1987) do essentially the same
thing, but must take into account the variance and
covariance of the nine free parameters in F (equals six
free parameters in S and three in P). This makes the
variance more complicated in derivation, but conceptu-
ally the same. Workers such as Tamura and Nei (1993)
take a shortcut by ignoring the contribution of the
terms in P (this is further explained in Waddell, 1997).

To adjust for unequal site rates, the gradient is
measured for the new power function (M 21). For ex-
ample, with the inverse Gaussian (i.G.) distribution,
the simple transversion distance becomes

d 5 21/2(b 51 2 (1 2 ln [1–2dobs ]/b )2 6 /2),

where b is the i.G. shape parameter.
For this M 21 function, the gradient at dobs equals

1/(1–2dobs) 3 (1 2 ln [1–2dobs]/b) (Waddell, 1995; Wad-
dell et al., 1997a), giving Var [d] 5 1/2dobs(1 2 ln
[1–2d obs]/b)2/(1–2d obs)(1 2 ln [1–2dobs]/b). By replacing
the power series of the logarithmic function in the
variance formula of Barry and Hartigan (1987) with
the power series of M 21, we are affecting the same type
of modification for unequal site rates. More formally, we
have the following proof of the delta method approxima-
tion, Eq. (5), for the variance of Eq. (2). The proof is a
direct extension of Barry and Hartigan’s (1986) proof of
the special case where M[x] 5 ex to a general M. In
particular, by Eqs. (2) and (4), we have

di j 5 2tr (PM21[P]) 5 2o
r51

`

artr (PBr ),

and the remainder of Barry and Hartigan’s proof
applies upon substitution of their term 1/r for ar.

APPENDIX 5: DERIVATION OF A
DISTRIBUTION COEFFICIENT

The term ar is given by the equation M 21[1 2 x) 5
2Si ai xi. For the inverse Gaussian distribution,
M 21[1 2 x] can be written as

y 5
d

2 31 2 51 2
ln [1 2 x]

d 6
2

4 .

The function

ln [1 2 x] 5 2o
i51

` xi

i
so y 5

d

2 31 2 51 1
1

d o xi

i 6
2

4
5 2o xi

i
2

1

2d 1o xi

i 2
2

.

Thus

ai 5
1

i
1 2d o

j51

i21 1

j (i 2 j )
.

APPENDIX 6

Proof of the ‘‘test’’ of time reversibility via equalities
E1–E3 (marked as Eqs. (6) to (8)).

It is easily checked that a rate matrix

R 5 3
* A B C

D * E F

G H * I

J K L *
4

forms a reversible model precisely if we can write R in
form (2), where

R 5 3
* x1a x1b x1c

x2a * x2d x2e

x3b x3d * x3 f

x4c x4e x4 f *
4 .

Here, all entries are positive, except the ‘‘*’’ entries,
which are chosen so that each row sums to 0. But then
AGE 5 (x1a)(x3b)(x2d ) 5 x1x2x3abd and BDH 5
(x1b)(x2a)(x 3d ) 5 x1x2x3abd; that is, AGE 5 BDH, while
similarly AJF 5 CDK and EKI 5 FHL (E1–E3).

Conversely, suppose the three equations hold. We
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show that R can be written in the form (2) and therefore
it forms a reversible model.

Set

x1 5
C

J
, x2 5

EI

HL
, x3 5

I

L
, x4 5 1, and

a 5
AJ

C
, b 5

BJ

C
, c 5 J, d 5

HL

I
, e 5

FHL

EI
, f 5 L.

Then clearly A 5 x1a, B 5 x1b, C 5 x1c, H 5 x3d, I 5 x3 f,
J 5 x4c, L 5 x4 f, E 5 x2d, F 5 x2e.

It remains to check that

D 5 x2a, G 5 x3b, K 5 x4e.

We have

x2a 5
EI

HL

AJ

C

(E 3)

5 FAJ

KC

(E2)

5 CDK

KC
5 D,

x3b 5
I

L

BJ

C

(E1)

5 AGEIJ

DHLC

(E2)

5 GEIK

HLF

(E3)

5 GFHL

HLF
5 G,

x4e 5
FHL

EI

(E3)

5 EKI

EI
5 K,

as required, completing the proof.
Note. If R is reversible, then we can write R 5 QP

(for some symmetric Q) in place of R 5 P21S.
Proof. Set Q 5 RP21. We need to show Q 5 Qt.

Since PR 5 RtP, if we pre- and postmultiply this
equation through by P21 we get, Q 5 RP21 5 P21Rt 5
Qt. Thus, Q 5 Qt as claimed. Further, this shows R is
reversible if and only if R 5 QP (as Zharkikh, 1994,
also notes, but with some ambiguity due to his follow-
ing text and simulations).
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