[an error occurred while processing this directive]

Günter SteinkeAssoc Prof Günter Steinke

Associate Professor


School of Mathematics and Statistics
University of Canterbury
Private Bag 4800
Christchurch 8140, NEW ZEALAND

Room 603, Erskine Building
Telephone: +64 3 364 2987 ext 7680
Fax: +64 3 364 2587
Email: gunter.steinke@canterbury.ac.nz

Research Interests

Geometry. topology, groups, combinatorics; in particular, topological and finite geometries and their automorphism groups.

I am offering a number of Master's and PhD Thesis Projects in these areas. More are available on request.

Recent Publications

  • G.F. Steinke. On Kleinewillinghöfer types of finite Laguerre planes with respect to homotheties. Australasian J. Combin. 66, 425-435 (2016).
  • G.F. Steinke. Finite Minkowski planes of type 20 with respect to homotheties. Finite Fields Appl. 39, 83-95 (2016). DOI 10.1016/j.ffa.2016.01.007
  • G.F. Steinke. 2-dimensional Laguerre planes admitting 4-dimensional groups of automorphisms that fix a parallel class. Aequationes Math. 89, 1359-1388 (2015). DOI 10.1007/s00010-014-0315-1
  • G.F. Steinke and M.J. Stroppel. Simple groups acting two-transitively on the set of generators of a finite elation Laguerre plane. Beitr. Algebra Geom. 56, 285-298 (2015). DOI 10.1007/s13366-013-0169-z
  • R. Löwen and G.F. Steinke. The circle space of a spherical circle plane. Bull. Belg. Math. Soc. (Simon Stevin) 21, 351-364 (2014).
  • G.F. Steinke and M.J. Stroppel. Finite elation Laguerre planes admitting a two-transitive group on their set of generators. Innov. Incidence Geom. 13, 207-223 (2013).
  • B. Martin, J. Schillewaert, G.F. Steinke and K. Struyve. On metrically complete Bruhat-Tits buildings. Adv. Geom. 13, 497-510 (2013). DOI: 10.1515/advgeom-2012-0036
  • G.F. Steinke. A note on Minkowski planes admitting groups of automorphisms of some large types with respect to homotheties. J. Geom. 103, 531-540 (2012). DOI 10.1007/s00022-013-0143-9
  • G.F. Steinke. A family of flat Laguerre planes of Kleinewillinghöfer type IV.A. Aequationes Math. 84, 99-119 (2012). DOI 10.1007/s00010-011-0111-0
  • J. Schillewaert and G.F. Steinke. A flat Laguerre plane of Kleinewillinghöfer type V. J. Austral. Math. Soc. 91, 257-274 (2011). DOI 10.1017/S1446788711001534 PDF
  • J. Schillewaert and G.F. Steinke. Flat Laguerre planes of Kleinewillinghöfer type III.B. Adv. Geom. 11 (2011), 637-652. PDF DOI 10.1515/ADVGEOM.2011.038
  • G.F. Steinke and H. Van Maldeghem. Generalized Quadrangles and Projective Axes of Symmetry. Beitr. Algebra Geom. 51 (2010), 191-207.
  • G.F. Steinke. A characterisation of certain elation Laguerre planes in terms of Kleinewillinghöfer types. Result. Math. 57 (2010), 43-51. PDF DOI 10.1007/s00025-009-0004-x
  • G.F. Steinke. Sisters of some 4-dimensional elation Laguerre planes of group dimension 10. Monatsh. Math. 159 (2010), 407-423. PDF DOI 10.1007/s00605-009-0107-1
  • R. Löwen, E. Soytürk and G.F. Steinke. Blowing up points and embedding flat stable planes in the nonorientable compact surface of genus one. Topology Appl. 155 (2008), 1041-1055. PDF
  • G.F. Steinke. On the Klein-Kroll types of flat Minkowski planes. J. Geom. 87 (2007), 160-178. PDF
  • G.F. Steinke. More on Kleinewillinghöfer types of flat Laguerre planes. Result. Math. 51 (2007), 111-126. PDF
  • B. Polster and G.F. Steinke. Virtual points and separating sets in spherical circle planes. Beitr. Algebra Geom. 48 (2007), 443-467.
  • R. Löwen and G.F. Steinke. Actions of R ⋅ SL2R~ on Laguerre planes related to the Moulton planes. J. Lie Th. 17 (2007), 685-708. PDF
  • G.F. Steinke. The automorphism groups of the Laguerre near-planes of order four. Australas. J. Combin. 36 (2006), 249-263.
  • G.F. Steinke. A classification of 4-dimensional elation Laguerre planes of group dimension 10. Adv. Geom. 6 (2006), 339-360.
  • G.F. Steinke. Elation Laguerre planes of order 16 are ovoidal. J. Combin. Designs 14 (2006), 313-323.
  • G.F. Steinke. A note on Laguerre translations. Innovations in Incidence Geom. 2 (2005), 93-100.
  • G.F. Steinke. Flat Laguerre planes admitting 4-dimensional groups of automorphisms that fix at least two parallel classes. Abh. Math. Sem. Univ. Hamburg 75 (2005), 163-177.
  • G.F. Steinke. Flat Laguerre planes of Kleinewillinghöfer type E obtained by cut and paste. Bull. Austr. Math. Soc. 72 (2005), 213-223. DOI:10.1017/S0004972700035024